In this study, the effect of the ionic cross-linking mode on the ability to control physical properties and in vitro release behavior of the dexamethasone (DEX) drug from chitosan (CS) and chitosan/hydroxyapatite (CS/HA) beads was investigated. CS solutions without and with HA and DEX were dripped into two coagulation solutions, prepared with a non-toxic ionic crosslinker (sodium tripolyphosphate, TPP) and distilled water, one at pH = 9.0 and other at pH = 6.0. Optical microscopy (OM) and scanning electron microscopy (SEM) results showed changes on the surface topology of the beads, with a reduction of roughness for beads prepared at pH = 6.0 and an increase for the one prepared at pH = 9.0. The diameter and sphericity of the beads prepared at pH = 6.0 proved more uniform and had a larger pore size with a good interconnectivity framework. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) suggested a higher crosslinking degree for beads prepared at pH = 6.0, corroborated by X-ray diffraction profiles (XRD) analysis that indicated a decrease in the crystalline structure for such beads. In in vitro drug release data, all beads presented a sustained release during the studied period (24 h). The drug release rate was affected by the pH of the coagulation solution used in the preparation of the beads. The in vitro kinetics of the release process was of the Peppas-Sahlin model, controlled by both diffusion and relaxation of polymer chains or swelling (anomalous transport mechanism). Our results suggest that DEX-loaded CS/HA beads, crosslinked in TPP coagulation solution at pH = 9.0, led to a decrease in the DEX release rate and prolonged the release period. Thus, this composition might have prospective as a functional material for bone and cartilage tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943658 | PMC |
http://dx.doi.org/10.3390/molecules24244510 | DOI Listing |
Pharmaceutics
December 2024
Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).
Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.
Pharmaceutics
November 2024
Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan.
Extracellular vesicles (EVs), including exosomes, are promising pharmaceutical modalities. They are purified from cell culture supernatant; however, the preparation may contain EVs with the desired therapeutic effects and different types of EVs, lipoproteins, and soluble proteins. Evaluating the composition of particulate impurities and the levels of protein impurities in final preparations is critical for quality control.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations.
View Article and Find Full Text PDFMolecules
December 2024
Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland.
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
Calcium alginate hydrogel is one of the most widely used materials for drug-carrier beads used in drug-delivery systems. In this study, we developed a new method to improve the encapsulation efficiency of ingredients, such as medicines, in calcium alginate hydrogel beads. In the gold standard method, the hydrogel beads are prepared in the liquid phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!