Chronic hepatitis B (CHB) is the cause of severe liver damage, cirrhosis, and hepatocellular carcinoma for over 240 million people worldwide. Nowadays, several types of treatment are being investigated, including immunotherapy using hepatitis B core antigen (HBcAg) assembled into highly immunogenic capsid-like particles (CLPs). Immunogenicity of plant-produced and purified HBcAg, administered parenterally or intranasally, was previously reported. In this study, a novel parenteral-oral vaccination scheme is proposed using plant-derived HBcAg preparations. The antigen for injection was obtained via transient expression in . HBcAg-producing transgenic lettuce was lyophilized and used as an orally delivered booster. The intracellular location of plant-produced HBcAg CLPs implies additional protection in the digestive tract during oral immunization. BALB/c mice were intramuscularly primed with 10 µg of the purified antigen and orally boosted twice with 5 or 200 ng of HBcAg. A long-lasting and significant systemic response after boosting with 200 ng HBcAg was induced, with anti-HBc titer of 25,000. Concomitantly, an insignificant mucosal response was observed, with an S-IgA titer of only 500. The profile of IgG isotypes indicates a predominant Th1 type of immune response, supplemented by Th2, after injection-oral vaccination. The results demonstrate that a low dose of parenteral-oral immunization with plant-derived HBcAg can elicit a specific and efficient response. This study presents a potential new pathway of CHB treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963566 | PMC |
http://dx.doi.org/10.3390/vaccines7040211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!