Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we propose an efficient COordinate Rotation DIgital Computer (CORDIC) iteration circuit design for Light Detection and Ranging (LiDAR) sensors. A novel CORDIC architecture that achieves the goal of pre-selecting angles and reduces the number of iterations is presented for LiDAR sensors. The value of the trigonometric functions can be found in seven rotations regardless of the number of input N digits. The number of iterations are reduced by more than half. The experimental results show the similarity value to be all 1 and prove that the LiDAR decoded packet results are exactly the same as the ground truth. The total chip area is 1.93 mm × 1.93 mm and the core area is 1.32 mm × 1.32 mm, separately. The number of logic gates is 129,688. The designed chip only takes 0.012 ms and 0.912 ms to decode a packet and a 3D frame of LiDAR sensors, respectively. The throughput of the chip is 8.2105 × 10 8 bits/sec. The average power consumption is 237.34 mW at a maximum operating frequency of 100 MHz. This design can not only reduce the number of iterations and the computing time but also reduce the chip area. This paper provides an efficient CORDIC iteration design and solution for LiDAR sensors to reconstruct the point-cloud map for autonomous vehicles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960895 | PMC |
http://dx.doi.org/10.3390/s19245412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!