Titanium nitride (TiN) nanoparticles have recently been considered as potential candidate plasmonic materials; such materials support localized surface plasmon resonances (LSPRs) and show excellent thermal stability with a high melting point. The electromagnetic (EM) field coupling and gap distance between components of individual TiN nanosphere multimers are critical parameters affecting their plasmonic sensitivity and surface-enhanced Raman scattering (SERS) performance, both of which are numerically investigated by the finite element method. It is demonstrated that the fractional shifts of both the dipolar LSPR wavelength [Formula: see text] and the refractive index sensitivity factor S follow the universal 'plasmon ruler' behavior, which is explained well in terms of EM field distribution. The response of the obtained S to [Formula: see text] is also presented and elucidated in terms of the optical response of the dielectric constants of TiN. The maximum S and SERS enhancement (excited by three normally available lasers in experiments) are also predicted; both are comparable to the values for Au dimeric nanoparticles. The present work holds great promise for the development of non-noble metal plasmonic materials in both SERS and plasmonic sensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab61d3 | DOI Listing |
Anal Methods
November 2017
Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:
For on-site analysis, the combination of surface enhanced Raman scattering (SERS) and colorimetry, as a dual-mode detection, can effectively improve the accuracy of detection, and reduce the influence of instrument fluctuation, which greatly improves the accuracy and reliability of the results. However, the preparation of SERS/colorimetry substrates are usually time-consuming and costly, which limits their practical applications. In this paper, a hydrophobic paper-based SERS/colorimetry substrate can be prepared by a simple spraying method.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:
This paper introduces a highly absorbent and sensitive cellulose nanofiber (CNF)/gold nanorod (GNR)@Ag surface-enhanced Raman scattering (SERS) sensor, fabricated using the vacuum filtration method. By optimizing the Ag thickness in the GNR@Ag core-shell structures and integrating them with CNFs, optimal SERS hotspots were identified using the Raman probe molecule 4-aminothiophenol (4-ATP). To concentrate pesticides extracted from fruit and vegetable surfaces, we utilized the evaporation enrichment effect using hydrophilic CNF and hole-punched hydrophobic polydimethylsiloxane (PDMS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
The use of dual-tracer contrast agents in clinical applications, such as sentinel lymph node (SLN) identification, offers significant advantages including enhanced accuracy, sensitivity, as well as comprehensive and multimodal visualization. In the current clinical practice, SLNs are typically marked prior to surgical resection by multiple and sequential injections of two tracers, the radioactive tracer and methylene blue (MB) dye. This imposes physical and psychological burden on patients and medical staff.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
Lung cancer with heterogeneity has a high mortality rate due to its late-stage detection and chemotherapy resistance. Liquid biopsy that discriminates tumor-related biomarkers in body fluids has emerged as an attractive technique for early-stage and accurate diagnosis. Exosomes, carrying membrane and cytosolic information from original tumor cells, impart themselves endogeneity and heterogeneity, which offer extensive and unique advantages in the field of liquid biopsy for cancer differential diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!