Redox-active biochar facilitates potential electron tranfer between syntrophic partners to enhance anaerobic digestion under high organic loading rate.

Bioresour Technol

Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, Key Laboratory of Environmental Engineering, Shaanxi, International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China.

Published: February 2020

Sawdust-based biochar prepared (SDBC) at three pyrolytic temperatures were compared as additives to mesophilic anaerobic digestion (AD). SDBC prepared at 500 °C performed better in enhancing CH production than other SDBCs. Analyzing the crucial electro-chemical characteristics of the SDBCs revealed that the excellent electron transfer capacity of SDBC was significant to stimulate methanogenesis promotion. A long-term semi-continuous operation further confirmed that adding SDBC to AD system increased the maximum organic loading rate (OLR) from 6.8 g VS/L/d to 16.2 g VS/L/d, which attributed to the extremely low volatile fatty acids (VFA) accumulation. Microbial community succession analysis found that SDBC addition altered both bacterial and archaea structure greatly. More importantly, the syntrophic and electro-active partners of Petrimonas and Methanosarcina synergistically enriched under high OLR condition were responsible for the high-efficient VFA degradation, which suggested that SDBC likely acted as redox-active mediator to facilitate direct interspecies electron transfer between the syntrophic partners for high-efficient syntrophic methanogenesis process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.122524DOI Listing

Publication Analysis

Top Keywords

syntrophic partners
8
anaerobic digestion
8
organic loading
8
loading rate
8
electron transfer
8
sdbc
6
redox-active biochar
4
biochar facilitates
4
facilitates potential
4
potential electron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!