Objective: To examine the association of urinary concentrations of arsenic (As), cadmium (Cd), mercury (Hg), nickel (Ni), lead (Pb), manganese (Mn), and chromium (Cr) with blood pressure (BP) and serum hormone levels in male adolescents.
Methods: Participants were selected from the INMA (Environment and Childhood)-Granada cohort at their follow-up visit when aged 15-17 years. Metal concentrations were measured in urine samples using inductively coupled plasma mass spectrometry. Outcomes were BP measurements (systolic, diastolic, and pulse pressure) recorded during the visit and concurrent serum levels of thyroid hormones, sex hormones, and adrenal hormones. Associations were assessed by regression analysis in a sub-sample of 133 boys with available data on urinary metals, outcomes, and relevant covariates.
Results: Models simultaneously adjusted for all metals and other potential confounders showed that urinary As and Cd were both associated with slight elevations in systolic BP (0.70 mmHg, 95%CI = 0.11; 1.29 and 1.47, 95%CI = 0.30; 2.63, respectively, per each 50% increase in metal concentrations), and urinary As was also associated with an increased risk of elevated systolic BP (≥120 mmHg) (OR = 1.28, 95%CI = 1.04; 1.56). The presence of detectable levels of 4 and 5 versus 2-3 non-essential metals (As, Cd, Hg, Ni, Pb) per boy was associated with elevations in systolic BP of 5.84 mmHg (95%CI = 0.40; 11.3) and 7.01 mmHg (95%CI = 1.01; 13.0), respectively (p-trend = 0.05). Significant associations were also found between Hg and increased testosterone and luteinizing hormone (LH) and decreased thyroid-stimulating hormone (TSH); between the combination of As and Hg and increased LH and insulin-like growth factor 1; between Cr and decreased TSH; and between Cd and increased adrenocorticotropic hormone.
Conclusions: These findings suggest that combined exposure to toxic metals, especially As and Cd, may contribute to BP elevation in male adolescents and that exposure to Hg, As, Cd, and Cr may affect their hormone levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2019.108958 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602.
is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.
View Article and Find Full Text PDFPLoS One
January 2025
The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.
The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.
View Article and Find Full Text PDFPLoS One
January 2025
Dirección General de Minería, República Dominicana.
This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India.
Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KU Leuven: Katholieke Universiteit Leuven, Chemistry, BELGIUM.
Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!