Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body.

Cell

Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany. Electronic address:

Published: December 2019

AI Article Synopsis

  • Researchers created a new tool called DeepMACT to improve the detection and analysis of cancer metastases and the targeting of therapeutic antibodies throughout the body.
  • The tool uses enhanced imaging techniques to boost the visibility of cancer cells and employs deep learning algorithms for precise, automated quantification of metastases.
  • DeepMACT successfully evaluated different cancer types, enabling detailed analysis of metastatic characteristics, which could significantly advance the development of effective antibody therapies before clinical trials.

Article Abstract

Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage. VIDEO ABSTRACT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591821PMC
http://dx.doi.org/10.1016/j.cell.2019.11.013DOI Listing

Publication Analysis

Top Keywords

deep learning
8
cancer metastasis
8
therapeutic antibody
8
antibody targeting
8
entire body
8
automated quantification
8
cancer
6
learning reveals
4
reveals cancer
4
therapeutic
4

Similar Publications

Background: The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction.

Purpose: To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging.

Material And Methods: CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI).

View Article and Find Full Text PDF

Artificial Intelligence-Based Detection and Numbering of Dental Implants on Panoramic Radiographs.

Clin Implant Dent Relat Res

February 2025

SEMRUK Technology Inc., Cumhuriyet Teknokent, Sivas, Turkiye.

Objectives: This study aimed to develop an artificial intelligence (AI)-based deep learning model for the detection and numbering of dental implants in panoramic radiographs. The novelty of this model lies in its ability to both detect and number implants, offering improvements in clinical decision support for dental implantology.

Materials And Methods: A retrospective dataset of 32 585 panoramic radiographs, collected from patients at Sivas Cumhuriyet University between 2014 and 2024, was utilized.

View Article and Find Full Text PDF

Dissecting AlphaFold2's capabilities with limited sequence information.

Bioinform Adv

November 2024

Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland.

Summary: Protein structure prediction aims to infer a protein's three-dimensional (3D) structure from its amino acid sequence. Protein structure is pivotal for elucidating protein functions, interactions, and driving biotechnological innovation. The deep learning model AlphaFold2, has revolutionized this field by leveraging phylogenetic information from multiple sequence alignments (MSAs) to achieve remarkable accuracy in protein structure prediction.

View Article and Find Full Text PDF

CardiacField: computational echocardiography for automated heart function estimation using two-dimensional echocardiography probes.

Eur Heart J Digit Health

January 2025

Department of Cardiovascular Surgery of Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) remains a major cause of mortality in the UK, prompting the need for improved risk predictive models for primary prevention. Machine learning (ML) models utilizing electronic health records (EHRs) offer potential enhancements over traditional risk scores like QRISK3 and ASCVD. To systematically evaluate and compare the efficacy of ML models against conventional CVD risk prediction algorithms using EHR data for medium to long-term (5-10 years) CVD risk prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!