A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Competitive Reaction of Neptunium(V) and Uranium(VI) in Potassium-Sodium Carbonate-Rich Aqueous Media: Speciation Study with a Focus on High-Resolution X-ray Spectroscopy. | LitMetric

Neptunium(V) and uranium(VI) are precipitated from an aqueous potassium-sodium-containing carbonate-rich solution, and the solid phases are investigated. U/Np M-edge high-energy resolution X-ray absorption near edge structure (HR-XANES) spectroscopy and Np 3d4f resonant inelastic X-ray scattering (3d4f RIXS) are applied in combination with thermodynamic calculations, U/Np L-edge XANES, and extended X-ray absorption fine structure (EXAFS) studies to analyze the local atomic coordination and oxidation states of uranium and neptunium. The XANES/HR-XANES analyses are supported by ab initio quantum-chemical computations with the finite difference method near-edge structure code (FDMNES). The solid precipitates are also investigated with powder X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results strongly suggest that K[NpOCO], K[NpO(CO)], and KNa[UO(CO)] are the predominant neptunium and uranium solid phases formed. Despite the 100 times lower initial neptunium(V) concentration at pH 10.5 and oxic conditions, neptunium(V)-rich phases predominately precipitate. The prevailing formation of neptunium(V) over uranium(VI) solids demonstrates the high structural stability of neptunium(V) carbonates containing potassium. It is illustrated that the Np M-edge HR-XANES spectra are sensitive to changes of the Np-O axial bond length for neptunyl(V/VI).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b02463DOI Listing

Publication Analysis

Top Keywords

neptuniumv uraniumvi
12
x-ray spectroscopy
8
solid phases
8
x-ray absorption
8
x-ray
6
neptuniumv
5
competitive reaction
4
reaction neptuniumv
4
uraniumvi potassium-sodium
4
potassium-sodium carbonate-rich
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!