Noncloggingly Sieving Sub-6 nm Nanoparticles of Noble Metals into Conductive Mesoporous Foams with Biological Nanofibrils.

ACS Nano

CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P.R. China.

Published: January 2020

Porous metal foams have been one of the most sought-after materials owing to their combination of bulk metallic characteristics (, thermal/electrical conductivity and ductility) and nanometric size-effect properties (, catalytic reactivity, plasmonic behavior, and high surface area). Traditional sol-gel approaches, though one of the most frequently used method to produce mesoporous metal foams, were hindered for scalable production and wide applications because of its tedious multistep procedure, time-consuming gelation time, and polydisperse pore sizes. Herein, by depositing biological nanofibrils (chitin, cellulose, and silk) on commercial filtration membranes, we report a facile approach to sieve and recycle sub-6 nm nanoparticles of noble metals (Au and Pt) nonclogging filtration into three-dimensional (3D) networks with interconnected mesopores. The porous networks could withstand air-drying, in contrast to freezing/supercritical drying conventionally used for mesoporous foams preparation. This approach was also applicable to both mesoporous monometallic (Au, Pt) and bimetallic (Au-Pt) foams. Moreover, the resultant mesoporous metallic foams show high porosity up to 90%, homogeneous mesoporous structure, and metallic conductivity up to 10 S/cm. Thus, this rapid and scalable sieving procedure not only offers a possibility of sieving noncloggingly for efficient recovery of metal nanoparticles but also starts a pathway to produce conductive and flexible mesoporous foams applicable in broad fields such as continuous flow catalysis and smart actuating.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b07923DOI Listing

Publication Analysis

Top Keywords

mesoporous foams
12
sub-6 nanoparticles
8
nanoparticles noble
8
noble metals
8
biological nanofibrils
8
metal foams
8
mesoporous
7
foams
7
noncloggingly sieving
4
sieving sub-6
4

Similar Publications

In this study, CO reacted with a curing agent through nucleophilic addition to form ammonium salts, enabling the stable capture and internal release of CO, which achieved gas-phase nucleation and foaming. Additionally, the introduction of wave-absorbing agents improved the absorption mechanism and promoted uniform foaming. This nucleation-free foaming process relies on the induced growth of gas nuclei and the synergistic effect of the wave-absorbing agents, effectively preventing the uneven foaming issues caused by traditional nucleating agents.

View Article and Find Full Text PDF

Currently, materials with specific, strictly defined functional properties are becoming increasingly important. A promising strategy for achieving these properties involves developing methods that facilitate the formation of hierarchical porous materials that combine micro-, meso-, and macropores in their structure. Macropores facilitate effective mass transfer of substances to the meso- and micropores, where further adsorption or reaction processes can occur.

View Article and Find Full Text PDF

Comprehensive insights into the application of graphene-based aerogels for metals removal from aqueous media: Surface chemistry, mechanisms, and key features.

Adv Colloid Interface Sci

January 2025

Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada. Electronic address:

Article Synopsis
  • Efficient removal of heavy metals from wastewater is crucial for protecting human health and ecosystems, leading to the development of high-performance adsorbents like graphene-based aerogels (GBAs).
  • GBAs are recognized for their unique properties, including a 3D porous structure, high porosity, and exceptional stability, which enhance their ability to remove both harmful and valuable metals from water.
  • The review delves into various synthesis methods for GBAs, their mechanisms for metal removal, and their potential for reuse, emphasizing both traditional adsorption and innovative electrochemical techniques for metal detoxification.
View Article and Find Full Text PDF
Article Synopsis
  • * The new method enhances control over evaporation conditions, which are crucial for maintaining the quality and reproducibility of the mesostructure.
  • * Advantages include reduced bumping/foaming, better handling of evaporated HCl, and the capability to process multiple samples at once, speeding up research on mesoporous materials.
View Article and Find Full Text PDF

To reuse red mud and slag wastes as raw materials, a green type of porous spherical red mud/slag-based geopolymer (RSG) was synthesized by utilizing suspension curing and foaming techniques. Because methylene blue (MB) and nickel ion (Ni) were common and difficult to treat in wastewater, the adsorption characteristics of MB and Ni, as well as the phase and microstructure of the porous RSG spheres prior to and after adsorption, were thoroughly investigated. The porous RSG spheres showed a stable and mesoporous structure with a BET surface area of 31.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!