Trichosporon cutaneum, a dimorphic oleaginous yeast, has immense biotechnological potential, which can use lignocellulose hydrolysates to accumulate lipids. Our preliminary studies on its dimorphic transition suggested that pH can significantly induce its morphogenesis. However, researches on dimorphic transition correlating with lipid biosynthesis in oleaginous yeasts are still limited. In this study, the unicellular yeast cells induced under pH 6.0-7.0 shake flask cultures resulted in 54.32% lipid content and 21.75 g/L dry cell weight (DCW), so lipid production was over threefold than that in hypha cells induced by acidic condition (pH 3.0-4.0). Furthermore, in bioreactor batch cultivation, the DCW and lipid content in unicellular yeast cells can reach 21.94 g/L and 58.72%, respectively, both of which were also more than twofold than that in hypha cells. Moreover, the activities of isocitrate dehydrogenase (IDH), malic enzyme (MAE), isocitrate lyase (ICL) and ATP citrate lyase (ACL) in unicellular cells were all higher than in the hyphal cells. In the meanwhile, the transcriptome data showed that the genes related to fatty acid biosynthesis, carbon metabolism and encoded Rim101 and cAMP-PKA signaling transduction pathways were significantly up-regulated in unicellular cells, which may play an important role in enhancing the lipid accumulation. In conclusion, our results provided insightful information focused on the molecular mechanism of dimorphic transition and process optimization for enhancing lipid accumulation in T. cutaneum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-019-02244-9DOI Listing

Publication Analysis

Top Keywords

dimorphic transition
16
lipid biosynthesis
8
trichosporon cutaneum
8
unicellular yeast
8
yeast cells
8
cells induced
8
lipid content
8
dcw lipid
8
hypha cells
8
unicellular cells
8

Similar Publications

Bisphenol A induces sex-dependent alterations in the neuroendocrine response of Djungarian hamsters to photoperiod.

Chemosphere

December 2024

Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France. Electronic address:

In nature, species synchronize reproduction and energy metabolism with seasons to optimize survival and growth. This study investigates the effect of oral exposure to bisphenol A (BPA) on phenotypic and neuroendocrine seasonal adaptations in the Djungarian hamster, which in contrast to conventional laboratory rodents, is a well-recognized seasonal model. Adult female and male hamsters were orally exposed to BPA (5, 50, or 500 μg/kg/d) or vehicle during a 10-week transition from a long (LP) to short (SP) photoperiod (winter transition) or vice versa (summer transition).

View Article and Find Full Text PDF

Sex-related differences characterize multiple sclerosis, an autoimmune, inflammatory and neurodegenerative disease displaying higher incidence in females as well as discrepancies in susceptibility and progression. Besides clinical specificities, molecular and cellular differences related to sex hormones were progressively uncovered improving our understanding of the mechanisms involved in this disabling disease. The most recent findings may give rise to the identification of novel therapeutic perspectives that could meet the urgent need for a treatment preventing the transition from the recurrent- to the progressive form of the disease.

View Article and Find Full Text PDF

Emergomyces africanus is a thermally dimorphic pathogen causing severe morbidity and mortality in immunocompromized patients. Its transition to a pathogenic yeast-like phase in the human host is a notable virulence mechanism. Recent studies suggest polyamines as key players in dimorphic switching, yet their precise functions remain enigmatic.

View Article and Find Full Text PDF

Premise: This paper provides an overview of the wood anatomy of the dogbane family (Apocynaceae), reconstructs wood anatomical trait evolution, and links this evolution with woody growth-form transitions and floral and seed trait innovations across the family.

Methods: Over 200 published wood anatomical descriptions were revised, and original light microscopic sections were made and described for another 50 species. Changes in wood anatomical characters through time were visualized with ancestral state reconstructions.

View Article and Find Full Text PDF
Article Synopsis
  • Trichosporon asahii is a fungus that can cause bloodstream infections in immunocompromised patients, especially those with low white blood cell counts (neutropenia).
  • The fungus can switch between yeast and hyphal forms, forming biofilms on medical devices like catheters, a process potentially influenced by a protein called Hog1.
  • Research revealed that a mutant strain of T. asahii lacking the hog1 gene produced more biofilm in rich lab conditions but less in living models like silkworms, indicating that Hog1 plays a crucial role in biofilm formation under different environmental stresses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!