C. elegans pronuclei fuse after fertilization through a novel membrane structure.

J Cell Biol

The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD.

Published: February 2020

After fertilization, parental genomes are enclosed in two separate pronuclei. In Caenorhabditis elegans, and possibly other organisms, when the two pronuclei first meet, the parental genomes are separated by four pronuclear membranes. To understand how these membranes are breached to allow merging of parental genomes we used focused ion beam scanning electron microscopy (FIB-SEM) to study the architecture of the pronuclear membranes at nanometer-scale resolution. We find that at metaphase, the interface between the two pronuclei is composed of two membranes perforated by fenestrations ranging from tens of nanometers to several microns in diameter. The parental chromosomes come in contact through one of the large fenestrations. Surrounding this fenestrated, two-membrane region is a novel membrane structure, a three-way sheet junction, where the four membranes of the two pronuclei fuse and become two. In the plk-1 mutant, where parental genomes fail to merge, these junctions are absent, suggesting that three-way sheet junctions are needed for formation of a diploid genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041684PMC
http://dx.doi.org/10.1083/jcb.201909137DOI Listing

Publication Analysis

Top Keywords

parental genomes
16
pronuclei fuse
8
novel membrane
8
membrane structure
8
pronuclear membranes
8
three-way sheet
8
parental
5
membranes
5
elegans pronuclei
4
fuse fertilization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!