The present study was designed to investigate the effects of okadaic acid intracerebroventricular (ICV) injection on memory function and expression level of α7 subunit of nicotinic acetylcholine receptor (nAChR) and NR2B subunit of NMDA glutamate receptors in the hippocampus, as well as effect of the antidementic drug memantine on okadaic acid induced changes at systemic and molecular levels in rats. Okadaic acid was dissolved in artificial cerebrospinal fluid (aCSF) and injected ICV 200 ng/10 μl. Vehicle control received 10 μl of aCSF ICV bilaterally. Control and okadaic acid injected rats were divided into two subgroups: treated i.p. with saline or memantine (5 mg/kg daily for 13 days starting from the day of okadaic acid injection). Rats were trained in the dual-solution plus-maze task that can be solved by using place or response strategies. The Western immunoblotting was used to determine relative amount of hippocampal receptors protein levels. Obtained data revealed that okadaic acid ICV injected rats were severely impaired at acquiring the place version of the maze accompanied by significant decline in hippocampal α7 subunit of nACh receptors protein levels. Memantine treatment can prevent okadaic acid induced impairment of hippocampal-dependent spatial memory and accompanied by modulation of the expression level of α7 subunit of nACh and NR2B subunit of NMDA receptors in the hippocampus. Thus, our results support the presumption that α7 nACh receptors may play an important role in the cognitive enhancer effects of memantine and emphasize the role of cholinergic-glutamatergic interactions in memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0000000000001375 | DOI Listing |
J Hazard Mater
December 2024
Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil.
Microplastics (MP) are suitable substrates for the colonization of harmful microalgal cells and the adsorption of their lipophilic compounds including phycotoxins. Moreover, such interactions likely change as physical-chemical characteristics of the MP surface are gradually modified during plastic degradation in aquatic environments. Using a combination of innovative laboratory experiments, this study systematically investigated, for the first time, the influence of various MP characteristics (polymeric composition, shape, size, and/or surface roughness) on its capacity to carry both living harmful algal cells and dissolved phycotoxins.
View Article and Find Full Text PDFMar Environ Res
December 2024
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity.
View Article and Find Full Text PDFHarmful Algae
January 2025
School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States. Electronic address:
Pharmaceuticals (Basel)
November 2024
Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain.
: berries are edible fruits from the Iberian Atlantic coast, characterized by a rich polyphenolic composition, which endows their juice with potential protective effects against neurodegeneration. This study aimed to evaluate the potential of the relatively lesser-known berries as a novel neuroprotective agent against neurodegenerative diseases. : The phenolic compounds of the juice were characterized using UHPLC-HRMS (Orbitrap).
View Article and Find Full Text PDFToxins (Basel)
November 2024
Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11355, Saudi Arabia.
In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein (FAM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!