To investigate the effects of stem configuration on leaf biomass allocation in different organs of the current-year shoots at different canopy heights, relationships of biomass in different organs (i.e., leaves, stems, and twigs) and stem configuration (i.e., stem diameter, length, width/length, stem volume and stem density) were analyzed using the data of 69 woody species from the Yangjifeng Natural Reserve, Jiangxi Provence. Standardized major axis (SMA) was used to explore the regression between biomass and stem configuration. The results showed that there was no significant difference in leaf biomass, stem biomass, twig biomass, stem diameter, stem length, stem width/length and stem volume of current year shoots from upper and lower canopy heights and life forms (i.e., evergreen and deciduous woody plants). Stem density differed significantly in the current year shoots at different heights for both evergreen and deciduous woody species. There were isometric relationships among leaf, stem and total biomass of shoots in different canopy heights and in different life forms. Leaf biomass scaled allometrically with stem diameter and volume, with the scaling exponents being not different significantly among different canopy heights. With respect to the stem configuration of the twigs, stem length, stem width/length and stem density contributed less than 24% to the leaf biomass variation in the current-year shoots. On the contrary, stem diameter and volume had greater effects on leaf biomass of the current-year shoots than stem length, stem width/length and stem density. Canopy heights did not significantly affect the allometric scaling relationships between the stem configuration and leaf biomass of the current-year shoots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201911.001 | DOI Listing |
Pest Manag Sci
January 2025
Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.
Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.
Foods
December 2024
Food Toxicology Unit, Department of Life and Environmental Science, University of Cagliari, University Campus of Monserrato, 09042 Cagliari, Italy.
Artichoke ( L.) is an herbaceous perennial plant from the Mediterranean Basin, cultivated as a poly-annual crop in different countries. Artichoke produces a considerable amount of waste at the end of the harvesting season in the field (5.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Agriculture, University of Khartoum, Khartoum 11115, Sudan.
Two-year experiments were conducted to assess the responses of yield and nutrient use efficiency of sorghum to nitrogen and phosphorus under saline soils. Three nitrogen rates (0, 180, and 360 N kg ha) and three phosphorus rates (0, 60, and 120 PO kg ha) were used in this study. Our results showed that nitrogen and phosphorus supply increased SPAD (leaf greenness, 5.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
Strawberries are valued globally for their nutritional, aesthetic, and economic benefits. Optimizing blue-to-red LED ratios and nitrogen levels is essential for sustainable indoor strawberry cultivation. This factorial study investigated the effects of blue and red LED combination ratios (L1; 1:3, L2; 1:4, and L3; 1:6) and nitrogen levels (N1; 100 and N2; 200 mg/L) on the physiology and performance of strawberries in a plant factory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!