Ordered and flexible porous frameworks with solution processability are highly desirable to fabricate continuous and large-scale membranes for the efficient gas separation. Herein, the first microporous hydrogen-bonded organic framework (HOF) membrane has been fabricated by an optimized solution-processing technique. The framework exhibits the superior stability because of the abundant hydrogen bonds and strong π-π interactions. Thanks to the flexible HOF structure, the membrane possesses the unprecedented pressure-responsive H /N separation performance. Furthermore, the scratched membrane can be healed by the treatment of solvent vapor, achieving the recovery of separation performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201914548 | DOI Listing |
J Hazard Mater
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Institute of Nuclear and New Energy Technology, Room A320, Nengke Building, Qinghua Yuan No.1, Beijing, CHINA.
Exploring host-guest interactions to regulate hydrogen-bonding assembly offers a promising approach for developing advanced porous crystal materials (PCMs). However, screening compatible guests with appropriate geometries and host-guest interactions that could inhibit the dense packing of building blocks remains a primary challenge. This study presents a novel guest-induced crystallization (GIC) strategy, guided by thermodynamic calculations, to develop porous hydrogen-bonded organic frameworks (HOFs) using structurally challenging tetrazole building units.
View Article and Find Full Text PDFFront Chem
December 2024
Department of Chemistry, University of Wyoming, Laramie, WY, United States.
Covalent integration of polymers and porous organic frameworks (POFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), represent a promising strategy for overcoming the existing limitations of traditional porous materials. This integration allows for the combination of the advantages of polymers, i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
Developing hybrid fluorescence (FL)/room-temperature phosphorescent (RTP) materials in dry-state, aqueous, and organic solvents holds paramount importance in broadening their applications. However, it is extremely challenging due to dissolved oxygen and solvent-assisted relaxation causing RTP quenching in an aqueous environment and great dependence on SiO-based materials. Herein, an efficient endogenetic carbon dot (CD) strategy within melamine-formaldehyde (MF) microspheres to activate RTP of CDs has been proposed through the pyrolysis of isophthalic acid (IPA) molecules and branched-chain intra-microspheres.
View Article and Find Full Text PDFACS Catal
December 2024
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!