As the signals of potentiometric-based DNA ion-selective field effect transistor (ISFET) sensors differ largely from report to report, a systematic revisit to this method is needed. Herein, the hybridization of the target and the probe DNA on the sensor surface and its dependence on the surface probe DNA coverage and the ionic strength were systematically investigated by surface plasmon resonance (SPR). The maximum potentiometric DNA hybridization signal that could be registered by an ISFET sensor was estimated based on the SPR measurements, without considering buffering effects from any side interaction on the sensing electrode. We found that under physiological solutions (200 to 300 mM ionic strength), the ISFET sensor could not register the DNA hybridization events on the sensor surface due to Debye screening. Lowering the salt concentration to enlarge the Debye length would at the same time reduce the surface hybridization efficiency, thus suppressing the signal. This adverse effect of low salt concentration on the hybridization efficiency was also found to be more significant on the surface with higher probe coverage due to steric hindrance. With the method of diluting buffer, the maximum potentiometric signal generated by the DNA hybridization was estimated to be only around 120 mV with the lowest detection limit of 30 nM, occurring on a surface with optimized probe coverage and in the tris buffer with 10 mM NaCl. An alternative method would be to achieve high-efficiency hybridization in the buffer with high salt concentration (1 M NaCl) and then to perform potentiometric measurements in the buffer with low salt concentration (1 mM NaCl). Based on the characterization of the stability of the hybridized DNA duplexes on the sensor surface in low salt concentration buffer solutions, the estimated maximum potentiometric signal could be significantly higher using the alternative method. The lowest detection limit for this alternative method was estimated to be around 0.6 nM. This work can serve as an important quantitative reference for potentiometric DNA sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.9b02086 | DOI Listing |
Ital J Food Saf
November 2024
Plant Pathology and Postharvest Quality Laboratory, Regional Center for Agronomical Research of Kenitra, Morocco.
Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.
View Article and Find Full Text PDFJ Clin Pharmacol
January 2025
Division of Emergency Medicine and Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, ON, Canada.
Pediatric asthma exacerbations represent a significant cause of emergency department use and hospitalizations. Despite available treatment options, many children's exacerbations are refractory to standard therapies and require adjunct treatments. The Intravenous Magnesium: Prompt use for Asthma in Children Treated in the Emergency Department study investigated the pharmacology of intravenous magnesium sulfate (IVMg) in treating pediatric asthma exacerbations.
View Article and Find Full Text PDFBiodegradation
January 2025
Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamilnadu, 608502, India.
Sci Rep
January 2025
School of Civil Engineering and Architecture, Anhui University of Science and Technology, AnHui Huainan, 232001, China.
In order to study the durability of solidified waste mud, dry-wet cycle experiments were carried out under the erosion of sodium chloride solutions with different concentrations. The unconfined compressive strength and mass change rate of solidified mud were studied and analyzed. The results show that when the number of dry-wet cycles increases, the unconfined compressive strength and mass of the sample show a downward trend.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!