A vaccine that induces broadly neutralizing antibodies (bnAbs) against the human immunodeficiency virus (HIV) would be instrumental in controlling the disease. The membrane proximal external region (MPER) peptide is an appealing antigen candidate since it is conserved and is the target of several human bnAbs, such as 2F5. We previously found that liposomes containing cobalt porphyrin-phospholipid (CoPoP) can bind to a his-tagged MPER peptide, resulting in biomimetic antigen presentation on a lipid bilayer. The present study generated various his-tagged, synthetic MPER fragments, which were bound to liposomes containing CoPoP and a synthetic monophosphoryl lipid A (MPLA) and assessed for immunogenicity in mice. MPER peptides with amino acids stretches originating from the membrane insertion point that were at least 25 amino acids in length, had greater 2F5 reactivity and induced stronger antibody responses, compared to shorter ones. Immunization with the lipid-presented MPER elicited stronger antibody responses compared to Alum and Montanide adjuvants, which could recognize recombinant gp41 and gp140 proteins that contained MPER sequences. The induced antibodies neutralized a tier 1A virus that is sensitive to neutralizing antibodies (W61D(TCLA)0.71), but not another tier 1A nor a tier 2 strain. Co-formulation of the MPER peptide with an unrelated malaria protein antigen (Pfs25) that is effectively adjuvanted with liposomes containing CoPoP and MPLA resulted in elicitation of higher MPER antibody levels, but did not improve neutralization, possibly due to interference with proper peptide presentation in the membrane. Murine hybridomas were generated that produced MPER antibodies, but they were non-neutralizing. These results do not show that bnAbs could be generated with MPER peptides and CoPoP liposomes, but do not rule out this possibility with additional improvements to the approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289672 | PMC |
http://dx.doi.org/10.1007/s10439-019-02398-8 | DOI Listing |
Protein Pept Lett
January 2025
Department of Hepatitis, AIDS and Blood-borne Diseases, Pasteur Institute of Iran. Tehran, Iran.
Background: There have been great efforts in vaccine design against HIV-1 since 1981. Various approaches have been investigated, including optimized delivery systems and effective adjuvants to enhance the efficacy of selective antigen targets. In this study, we evaluated the efficiency of IMT-P8 and LDP12 cell penetrating peptides in eliciting immune responses against HIV-1 Nef-MPER-V3 fusion protein as an antigen candidate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain.
Establishment of interactions with the envelope lipids is a cardinal feature of broadly neutralizing antibodies (bnAbs) that recognize the Env membrane-proximal external region (MPER) of HIV. The lipid envelope constitutes a relevant component of the full "quinary" MPER epitope, and thus antibodies may be optimized through engineering their capacity to interact with lipids. However, the role of the chemically complex lipid nanoenvironment in the mechanism of MPER molecular recognition and viral neutralization remains poorly understood.
View Article and Find Full Text PDFCurr Opin Struct Biol
October 2024
Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. Electronic address:
The membrane proximal external region (MPER) of the HIV envelope glycoproteins has generated renewed interest after a recent phase I vaccine trial that presented MPER lipid-peptide epitopes demonstrated promise to elicit a broad neutralization response. The antigenicity of MPER is intimately associated with the membrane, and its presentation relies significantly on the lipid composition. This review brings together recent findings on the influence of membranes on the conformation of MPER and its recognition by broadly neutralizing antibodies.
View Article and Find Full Text PDFJ Pept Sci
December 2024
Department of Pharmacy, University of Salerno, Fisciano, Italy.
Cell
June 2024
Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Duke Global Health Institute, Duke School of Medicine, Durham, NC 27710, USA. Electronic address:
A critical roadblock to HIV vaccine development is the inability to induce B cell lineages of broadly neutralizing antibodies (bnAbs) in humans. In people living with HIV-1, bnAbs take years to develop. The HVTN 133 clinical trial studied a peptide/liposome immunogen targeting B cell lineages of HIV-1 envelope (Env) membrane-proximal external region (MPER) bnAbs (NCT03934541).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!