Between May and September 2016, mosquitoes were collected on a biweekly basis at 55 locations with CO-baited encephalitis vector surveillance traps along the Upper Rhine, Germany, to evaluate the species composition, geographical distribution and abundance of the Anopheles maculipennis complex, some members of this complex being considered vectors of historical malaria in Germany. A total of 2115 Anopheles maculipennis complex specimens were collected during the season, of which a sample of 1252 individuals was determined to species level by amplification of species-specific internal transcribed spacer 2 (ITS2) sequences. A total of 856 individuals of Anopheles daciae (68.37%), 394 Anopheles messeae (31.47%) and 2 Anopheles maculipennis s.s. (0.16%) were recorded. The number and proportion of A. daciae was remarkably higher in the northern meandering zone of the Upper Rhine (843 specimens, 79.90%), than in the more canalised southern furcation zone where A. messeae with 183 collected specimens represented 92.89% of 197 classified individuals. The average number of collected A. maculipennis s.l. individuals per trapping site was 38.45, equalling 0.64% of the total mosquito collection. Despite an increase in imported malaria cases, this comparatively low abundance of A. maculipennis s.l. may indicate a low risk of endemic malaria transmission by members of the A. maculipennis complex today. The proportionally dominance of A. daciae suggests that this species could be suspected the main historical vector of malaria in the Upper Rhine region. Sequence analyses of the ITS2 fragment revealed intraindividual polymorphisms within 3 of 5 diagnostic nucleotides in all specimens of A. daciae, raising the question if additional loci should be considered, to gain further insight into the taxonomical relation to A. messeae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00436-019-06551-z | DOI Listing |
Sci Rep
December 2024
Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
The Anopheles maculipennis complex consists of several mosquito species, including some primary malaria vectors. Therefore, the presence of a species in a particular area significantly affects public health. In this study, 1252 mosquitoes were collected in northern Italy, representing four identified species of the Anopheles maculipennis complex (Anopheles daciae sp.
View Article and Find Full Text PDFParasit Vectors
December 2024
Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.
Analyses of mosquito-borne virus outbreaks have revealed the presence of similar virus strains over several years. However, it remains unclear how mosquito-borne viruses can persist over winter, when conditions are generally unfavorable for virus circulation. One potential route for virus persistence is via diapausing mosquitoes.
View Article and Find Full Text PDFActa Trop
December 2024
Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. Electronic address:
Insects
April 2024
Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia.
The Maculipennis subgroup of malaria mosquitoes includes both dominant malaria vectors and non-vectors in Eurasia. Understanding the genetic factors, particularly chromosomal inversions, that differentiate species can provide valuable insights for vector control strategies. Although autosomal inversions between the species in this subgroup have been characterized based on the chromosomal banding patterns, the number and positions of rearrangements in the X chromosome remain unclear due to the divergent banding patterns.
View Article and Find Full Text PDFParasit Vectors
May 2024
Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
Background: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!