Cancer immunotherapy based on the engineering of chimeric antigen receptors (CAR) on T cells has emerged as one of the most promising new therapies for patients with B-cell malignancies. Preclinical assessments of essential CAR T cell functions such as trafficking and cytotoxicity are critical for accelerating the development of highly effective therapeutic candidates. However, current tools for evaluating CAR-T functions lack sufficient precision. Here, a micropatterned tumor array (MiTA) is described that enables detailed and dynamic characterization of CAR T cell trafficking toward tumor-cell islands and subsequent killing of tumor cells. It is shown that CAR T cells often merge into large clusters that envelop and kill the tumor cells with high efficiency. Significant differences are also measured between CAR T cells from different donors and between various CAR T cell constructs. Overall, the assay allows for multifaceted, dynamic, high-content evaluation of CAR T trafficking, clustering, and killing and could eventually become a useful tool for immune-oncology research and preclinical assessments of cell-based immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891905PMC
http://dx.doi.org/10.1002/advs.201901829DOI Listing

Publication Analysis

Top Keywords

car cells
16
car cell
12
car
8
micropatterned tumor
8
preclinical assessments
8
tumor cells
8
cells
6
dynamic profiling
4
profiling antitumor
4
antitumor activity
4

Similar Publications

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy.

Mol Ther

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:

CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.

View Article and Find Full Text PDF

Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies.

Oncogene

January 2025

Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.

Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients.

View Article and Find Full Text PDF

The accessibility of CAR-T cells in centralized production models faces significant challenges, primarily stemming from logistical complexities and prohibitive costs. However, European Regulation EC No. 1394/2007 introduced a pivotal provision known as the hospital exemption.

View Article and Find Full Text PDF

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!