Intensive cultivation and introduction of input-responsive high-yielding varieties with application of major nutrients in rice-wheat rotation of Indo-Gangetic plains (IGPs) lead to multiple nutrient deficiencies. A survey of Indian soils has shown that 40% are deficient in available zinc (Zn), 33% in sulfur (S), and 33% in boron (B). Studies have indicated that application of these nutrients with major nutrients can improve the crop productivity. Keeping the importance of aromatic rice in view, coated-urea materials and their effects on rice yields, nitrogen (N), and Zn content in different parts and input economics are evaluated. Three field trials are conducted on aromatic rice to test boron-coated urea (BCU), sulfur-coated urea (SCU), and zinc-coated urea (ZnCU) in 2013 and 2014. Results indicate that the highest yields are obtained with 0.5% BCU, 5.0% SCU, and 2.5% ZnCU as zinc sulfate heptahydrate. These treatments increase grain yield by 13%, 25%, and 17.9% over prilled urea (PU). Moreover, 0.5% BCU, 5% SCU, and 2.5% ZnCU register the highest N, S, and Zn contents in bran, husk, grain, and straw. Coated-urea materials also improve use efficiencies and harvest index of N and Zn over PU. The findings of this study suggest that 0.5% boron, 5.0% sulfur, or 2.5% zinc-coated urea show improvement in returns and benefit-cost ratio in aromatic rice of western IGPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888745 | PMC |
http://dx.doi.org/10.1002/gch2.201900013 | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.
The electrochemical properties of chars have been recently described, positioning chars as active participants in microbial redox processes through functional groups, aromatic structures, redox-active metals, and radicals. While bench-scale studies have advanced mechanistic understanding of char's behavior and potential effects, translating these findings to complex ecosystems remains challenging. This is mainly due to the complexities of microbial communities and the unique properties of various ecosystems.
View Article and Find Full Text PDFPlant Genome
March 2025
Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China.
Tryptophan decarboxylase (TDC) belongs to a family of aromatic amino acid decarboxylases and catalyzes the conversion of tryptophan to tryptamine. It is the enzyme involved in the first step of melatonin (MT) biosynthesis and mediates several key functions in abiotic stress tolerance. In Oryza sativa under pesticide-induced stress, TDC function is unclear.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Developing multicharge and spin stabilization strategies is fundamental to enhancing the lifetime of functional organic materials, particularly for long-term energy storage in multiredox organic redox flow batteries. Current approaches are limited to the incorporation of electronic substituents to increase or decrease the overall electron density or bulky substituents to sterically shield reactive sites. With the aim to further expand the molecular toolbox for charge and spin stabilization, we introduce regioisomerism as a scaffold-diversifying design element that considers the collective and cumulative electronic and steric contributions from all of the substituents based on their relative regioisomeric arrangements.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Chemical and Biological Enginerring, Hechi University, 546300, Hechi, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, 546300, Hechi, China. Electronic address:
High-quality aromatic rice (HAR) is most sensitive to low-temperature stress at the booting stage (LTB), and LTB leads to quality reduction. The key enzymes involved in nitrogen and carbon metabolism significantly affect the synthesis of proteins and starch, thereby influencing the nutritional and taste quality of rice. However, to date, no studies have focused on the after-effects of low-temperature at booting on the quality formation of HAR.
View Article and Find Full Text PDFMicrobiome
December 2024
State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
Background: Planetary plastic pollution poses a major threat to ecosystems and human health in the Anthropocene, yet its impact on biogeochemical cycling remains poorly understood. Waterlogged rice paddies are globally important sources of CH. Given the widespread use of plastic mulching in soils, it is urgent to unravel whether low-density polyethylene (LDPE) will affect the methanogenic community in flooded paddy soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!