Oxygen loaded microbubbles are being investigated as a means of reducing tumour hypoxia in order to improve response to cancer therapy. To optimise this approach, it is desirable to be able to measure changes in tissue oxygenation in real-time during treatment. In this study, the feasibility of using magnetic resonance imaging (MRI) for this purpose was investigated. Longitudinal relaxation time (T1) measurements were made in simple hydrogel phantoms containing two different concentrations of oxygen microbubbles. T1 was found to be unaffected by the presence of oxygen microbubbles at either concentration. Upon application of ultrasound to destroy the microbubbles, however, a statistically significant reduction in T1 was seen for the higher microbubble concentration. Further work is needed to assess the influence of physiological conditions upon the measurements, but these preliminary results suggest that MRI could provide a method for quantifying the changes in tissue oxygenation produced by microbubbles during therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849496 | PMC |
http://dx.doi.org/10.1049/htl.2018.5058 | DOI Listing |
Cureus
December 2024
Department of Cardiology, Japanese Red Cross Maebashi Hospital, Maebashi, JPN.
When encountering severe hypoxemia that does not respond to oxygen supplementation, it is essential to consider underlying right-to-left shunting. Among various diagnostic approaches, the microbubble test via transthoracic echocardiography (TTE) is a simple, noninvasive method for detecting pulmonary arteriovenous shunts, particularly in hepatopulmonary syndrome (HPS). Although microbubbles are usually administered peripherally, using a Swan-Ganz (SG) catheter to inject microbubbles directly into the pulmonary artery may provide even more definitive diagnostic information.
View Article and Find Full Text PDFActa Biomater
December 2024
Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas. Electronic address:
The creation of innovative ultrasound contrast agents (UCAs) with the ability to monitor oxygen levels in real-time holds immense potential for advancing early diagnosis of various medical conditions such as hypoxic/reperfusion injury. In this study, we propose the development of oxygen sensitive UCAs using microbubbles composed of hemoglobin (HbMBs), which can function as sensors for blood oxygen levels. Previously, we performed a study highlighting the initial proof-of-concept efficacy of air-filled HbMBs in detecting oxygenation changes in vitro, offering a promising tool for clinically detecting tissue hypoxia.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran. Electronic address:
Background: Acoustic cavitation is a foundational mechanism in ultrasound therapy, primarily through inertial cavitation resulting from microbubble collapse. Sonodynamic therapy, with inertial acoustic cavitation threshold and low-dose radiation in the presence of sensitizers, may provide significant effects for cancer treatment, potentially overcoming resistance encountered with single therapies.
Methods: MCF7 breast cancer cells were subjected to sonodynamic therapy either alone or combined with ionizing radiation, gold nanoparticles coated with apigenin, and methylene blue.
Ultrason Sonochem
December 2024
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China. Electronic address:
Nanomaterials (Basel)
November 2024
State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Conventional antibiotics are limited by drug resistance, poor penetration, and inadequate targeting in the treatment of bacterial biofilm-associated infections. Microbubble-based ultrasound (US)-responsive drug delivery systems can disrupt biofilm structures and enhance antibiotic penetration through cavitation effects. However, currently developed US-responsive microbubbles still depend on antibiotics and lack targeting capability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!