AI Article Synopsis

  • The study analyzed the genetic variability of 'Liberibacter asiaticus' (CLas) in the North Eastern region of India, focusing on tandem repeat numbers (TRN) in specific genomic loci.
  • Among the 55 CLas strains examined, all belonged to a single amplicon group, yet showed significant variability in TRNs, with counts ranging from 0 to 21 and the discovery of two new repeat motifs.
  • The results indicated that Class II genotypes (TRN between 5 and 10) were the most prevalent, reflecting a high level of genetic diversity in these strains, particularly in the Manipur region, suggesting adaptation to local ecological conditions.

Article Abstract

The genetic variability of ' Liberibacter asiaticus' (CLas) population associated with huanglongbing (HLB) disease of citrus in North Eastern (NE) region of India, a geographically locked region, and home for the diversity of many citrus species was analyzed on the basis of tandem repeat numbers (TRN) in variable CLIBASIA_01645 genomic loci. Fifty-five CLas strains sampled from different groves of NE Hill (NEH) region of India were in single amplicon group, but there was remarkable genetic variability in TRNs. The TRN in HLB-associated CLas strains varied from 0-21 and two novel repeat motifs were also identified. Among the NE population of CLas, TRN5 and TRN9 were most frequent (total frequency of 36.36%) followed by TRN4 (14.55%) and TRN6, TNR7 with a frequency of 12.73% each. Class II type CLas genotypes (5 < TRN ≤ 10) had highest prevalence (frequency of 60.00%) in the samples characterized in present study. Class I (TRN ≤ 5) genotypes were second highest prevalent (29.09%) in the NEH region. Further analysis of genetic diversity parameters using Nei's measure (H value) indicated wide genetic diversity in the CLas strains of NE India (H value of 0.58-0.86). Manipur CLas strains had highest genetic variability (0.86) as compared to Eastern, Southern and Central India. The R values (TRN ≤ 10/TRN > 10) of NE CLas population was 10.43 (73/7), higher from other regions of India. Present study conclusively reported the occurrence of high genetic variability in TRN of CLas population in North East Indian citrus groves which have evolved to adapt to the specific ecological niche.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901247PMC
http://dx.doi.org/10.5423/PPJ.OA.03.2019.0061DOI Listing

Publication Analysis

Top Keywords

genetic variability
20
clas strains
16
clas population
12
trn ≤
12
clas
9
tandem repeat
8
repeat numbers
8
liberibacter asiaticus'
8
north east
8
region india
8

Similar Publications

Wildlife populations are not static. Intrinsic and extrinsic factors affect individuals, which lead to spatiotemporal variation in population density and range. Yet, dynamics in density and their drivers are rarely documented, due in part to the inherent difficulty of studying long-term population-level phenomena at ecologically meaningful scales.

View Article and Find Full Text PDF

Background: Primary hyperoxaluria type 1 (PH 1) is a rare genetic condition due to mutations in the AGXT gene. This leads to an overproduction of oxalate in the liver. Hyperoxaluria often causes kidney stones, nephrocalcinosis, and chronic kidney disease.

View Article and Find Full Text PDF

Human activities such as agriculture and urban development are linked to water quality degradation. Canada represents a large and heterogeneous landscape of freshwater lakes, where variations in climate, geography and geology interact with land cover alteration to influence water quality differently across regions. In this study, we investigated the influence of water quality and land use on bacterial communities across 12 ecozones.

View Article and Find Full Text PDF

Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!