Microalgal photosynthesis is a promising solar energy conversion process to produce high concentration biomass, which can be utilized in the various fields including bioenergy, food resources, and medicine. In this research, we study the optical design rule for microalgal cultivation systems, to efficiently utilize the solar energy and improve the photosynthesis efficiency. First, an organic luminescent dye of 3,6-Bis(4'-(diphenylamino)-1,1'-biphenyl-4-yl)-2,5-dihexyl-2,5-dihydropyrrolo3,4-c pyrrole -1,4-dione (D1) was coated on a photobioreactor (PBR) for microalgal cultivation. Unlike previous reports, there was no enhancement in the biomass productivities under artificial solar illuminations of 0.2 and 0.6 sun. We analyze the limitations and future design principles of the PBRs using photoluminescence under strong illumination. Second, as a multiple-bandgaps-scheme to maximize the conversion efficiency of solar energy, we propose a dual-energy generator that combines microalgal cultivation with spectrally selective photovoltaic cells (PVs). In the proposed system, the blue and green photons, of which high energy is not efficiently utilized in photosynthesis, are absorbed by a large-bandgap PV, generating electricity with a high open-circuit voltage (V) in reward for narrowing the absorption spectrum. Then, the unabsorbed red photons are guided into PBR and utilized for photosynthesis with high efficiency. Under an illumination of 7.2 kWh m d, we experimentally verified that our dual-energy generator with C-based PV can simultaneously produce 20.3 g m d of biomass and 220 Wh m d of electricity by utilizing multiple bandgaps in a single system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908680 | PMC |
http://dx.doi.org/10.1038/s41598-019-55358-6 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India. Electronic address:
This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia. Electronic address:
This study focuses on enhancing solar energy capture efficiency by introducing innovative hybrid nanofluids for use in solar thermal collectors, whose performance largely depends on the absorption properties of the working fluid. The newly developed hybrid nanofluids, MXene/NH2-UiO66 (Zr) (noted as MX/UO66) and MXene/MIL-88B (Fe) (noted as MX/ML88), were synthesized using an in-situ solvothermal method, combining annealed Ti3C2Tx MXenes with water-stable metal-organic frameworks (MOFs). These nanofluids achieved high efficiency at low concentrations, providing both economic and performance benefits.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Physical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 65167 ,Iran.
Interfacial solar evaporator generation (ISVG) is a new, cost-effective, and eco-friendly emerging method for water desalination. Two main criteria for evaluating ISVG performance are evaporation rate () and solar-to-vapor conversion efficiency (η). The main challenge of the previously presented models for the estimation of and η in 2D systems is that in most cases the calculated values are beyond the theoretical limits, > 1.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!