Phosphoinositide lipids regulate many cellular processes and are synthesized by lipid kinases. Type I phosphatidylinositol phosphate 5-kinases (PIP5KIs) generate phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)]. Several phosphoinositide-sensitive readouts revealed the nonequivalence of overexpressing PIP5KIβ, PIP5KIγ or Ras association domain family 4 (RASSF4), believed to activate PIP5KIs. Mass spectrometry showed that each of these three proteins increased total cellular phosphatidylinositol bisphosphates (PtdIns) and trisphosphates (PtdIns) at the expense of phosphatidylinositol phosphate (PtdIns) without changing lipid acyl chains. Analysis of KCNQ2/3 channels and PH domains confirmed an increase in plasma membrane PtdIns(4,5) in response to PIP5KIβ or PIP5KIγ overexpression, but RASSF4 required coexpression with PIP5KIγ to increase plasma membrane PtdIns(4,5) Effects on the several steps of store-operated calcium entry (SOCE) were not explained by plasma membrane phosphoinositide increases alone. PIP5KIβ and RASSF4 increased STIM1 proximity to the plasma membrane, accelerated STIM1 mobilization and speeded onset of SOCE; however, PIP5KIγ reduced STIM1 recruitment but did not change induced Ca entry. These differences imply actions through different segregated pools of phosphoinositides and specific protein-protein interactions and targeting.This article has an associated First Person interview with the first author of the paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983711PMC
http://dx.doi.org/10.1242/jcs.233254DOI Listing

Publication Analysis

Top Keywords

plasma membrane
20
phosphatidylinositol phosphate
12
type phosphatidylinositol
8
phosphate 5-kinases
8
pip5kiβ pip5kiγ
8
increase plasma
8
membrane ptdins45
8
plasma
5
phosphatidylinositol
5
membrane processes
4

Similar Publications

SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.

View Article and Find Full Text PDF

In-situ quantitative detection of hypochlorous acid in food samples by employing a near-infrared fluorescent probe in association with a portable optical data acquisition system.

Anal Chim Acta

May 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China. Electronic address:

Background: Hypochlorous acid (HClO) is a crucial disinfectant in the food industry. It can be used to soak perishable foods like vegetables, fruits, eggs, fish, and raw meat before processing and storage, eliminating microorganisms, bacteria, fungi, and pathogens to ensure food safety. HClO also helps preserve vegetables and fruits by reducing ethylene production, delaying rotting, decreasing cell membrane permeability, inhibiting polyphenol oxidase activity, and postponing discoloration.

View Article and Find Full Text PDF

Objectives: Maxillary transverse deficiency is a common malocclusion frequently observed in orthodontic clinics. Miniscrew-assisted rapid palatal expansion (MARPE) not only produces greater skeletal expansion but also offers advantages such as simple miniscrew implantation without flap elevation, enhanced patient comfort, and an expanded age range and indications for palatal expansion. However, the fixed connection between the expander and the miniscrews makes the expander difficult to remove, significantly hindering its clinical application.

View Article and Find Full Text PDF

MicroRNA-regulated flounder CLDN4 Functions in Anti-bacterial Immunity.

Fish Shellfish Immunol

March 2025

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address:

CLDN4 belongs to a multi-transmembrane protein family of claudins, which mainly functions in cell-cell adhesion and migration. MicroRNAs (miRNAs) are important post-transcriptional regulating factors that participate in broad biological process including immunity. Through high-throughput RNA sequencing strategy, a flounder miRNA, miR-29-x, was identified to be responsible to both bacteria and virus.

View Article and Find Full Text PDF

Salmonid fishes are well adapted to transition between salinities as part of a diadromid lifestyle, and many species are both economically and environmentally important. Ion-transporting gill epithelium helps fishes maintain ion balance during salinity transition. Recent transcriptomic surveys suggest that voltage-gated ion channels (VGICs) are present in gill epithelium of fishes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!