The paper presents the design and validation of body-conformal active ultrasound patches with integrated imaging and modulation modalities for image-guided neural therapy. A mechanically-flexible linear 64-element array of piezoelectric transducers with a resonance frequency of 5 MHz was designed for nerve localization. A second 8-element array using larger elements was integrated on the wearable probe for low intensity focused ultrasound neuromodulation at a resonance frequency of 1.3 MHz. Full-wave simulations were used to model the flexible arrays and estimate their generated pressure profiles. A focal depth of 10-20 mm was assumed for beamforming and focusing to support modulation of the vagus, tibial, and other nerves. A strain sensor integrated on the probe provides patient-specific feedback information on array curvature for real-time optimization of focusing and image processing. Each patch also includes high voltage (HV) multiplexers, transmit/receive switches, and pre-amplifiers that simplify connectivity and also improve the signal-to-noise ratio (SNR) of the received echo signals by ∼ 5 dB. Experimental results from a flexible prototype show a sensitivity of 80 kPa/V with ∼ 3 MHz bandwidth for the modulation and 20 kPa/V with ∼ 6 MHz bandwidth for the imaging array. An algorithm for accurate and automatic localization of targeted nerves based on using nearby blood vessels (e.g., the carotid artery) as image markers is also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2019.2959439 | DOI Listing |
Ann Thorac Cardiovasc Surg
January 2025
Division of Pediatric and Adult Congenital Cardiac Surgery, Maria Fareri Children's Hospital, Department of Surgery, Westchester Medical Center, New York Medical College, Valhalla, NY, USA.
Mitral annular calcifications have been known to increase complexity during mitral valve replacement (MVR). Standard procedure requires decalcification followed by reconstruction of the mitral annulus prior to placing the prosthesis. While this is the ideal technique, it is not feasible in every patient due to the associated risks.
View Article and Find Full Text PDFActa Dermatovenerol Croat
November 2024
Agata Janowska, MD, Department of Dermatology, , University of Pisa, Via Roma 67, 56126, Pisa, Italy; Phone: +39 050 992436, Fax: +39 050 992556,
Mycosis fungoides (MF) represent the most frequent form of cutaneous T-cell lymphoma (CTCL). Chlormethine gel has been approved as first-line therapy in MF. The classification of early forms of MF is clinically and histologically complex even for experienced clinicians.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Department of Neurosurgery, Jinan, China.
Purpose: Differentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity.
View Article and Find Full Text PDFJ Clin Med
December 2024
Faculty of Medicine, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
Jpn J Radiol
January 2025
Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
Purpose: Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images from MRI localizers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!