Due to their limited depth of field, conventional brightfield microscopes cannot image thick specimens entirely in focus. A common way to obtain an all-in-focus image is to acquire a z-stack of images by optically sectioning the specimen and then apply a multi-focus fusion method. Unfortunately, for undersampled image stacks, fusion methods cannot remove the blur in regions where the in-focus position is between two optical sections. In this work, we propose a parameter-free Gaussian PSF model in which the all-in-focus image together with both the depth map and sampling distances in image plane are estimated from the image sequence automatically, without knowledge on the z-stack acquisition. In a maximum a posteriori framework, an iteratively reweighted least squares method is used to estimate the image and an adaptive scaled gradient descent method is utilized to estimate the depth map and sampling distances efficiently. Experiments on synthetic and real data demonstrate that the proposed method outperforms the current state-of-the-art, mitigating fusion artifacts and recovering sharper edges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2019.2957941 | DOI Listing |
Phys Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Chow Yei Ching 506, Hong Kong, 999077, HONG KONG.
. The propagation speed of a shear wave, whether externally or internally induced, in biological tissues is directly linked to the tissue's stiffness. The group shear wave speed (SWS) can be estimated using a class of time-of-flight (TOF) methods in the time-domain or phase speed-based methods in the frequency domain.
View Article and Find Full Text PDFJ R Stat Soc Series B Stat Methodol
September 2024
Department of Statistics, Harvard University, Cambridge, MA, USA.
Motivated by applications in text mining and discrete distribution inference, we test for equality of probability mass functions of groups of high-dimensional multinomial distributions. Special cases of this problem include global testing for topic models, two-sample testing in authorship attribution, and closeness testing for discrete distributions. A test statistic, which is shown to have an asymptotic standard normal distribution under the null hypothesis, is proposed.
View Article and Find Full Text PDFJ Chem Theory Comput
June 2024
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.
In this work, we report our implementation of several independent-trajectory mixed-quantum-classical (ITMQC) nonadiabatic dynamics methods based on exact factorization (XF) in the Libra package for nonadiabatic and excited-state dynamics. Namely, the exact factorization surface hopping (SHXF), mixed quantum-classical dynamics (MQCXF), and mean-field (MFXF) are introduced. Performance of these methods is compared to that of several traditional surface hopping schemes, such as the fewest-switches surface hopping (FSSH), branching-corrected surface hopping (BCSH), and the simplified decay of mixing (SDM), as well as conventional Ehrenfest (mean-field, MF) method.
View Article and Find Full Text PDFJ Phys Chem B
November 2023
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
ACS Omega
August 2022
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 CP Groningen, The Netherlands.
Single-molecule nanopore electrophysiology is an emerging technique for the detection of analytes in aqueous solutions with high sensitivity. These detectors have proven applicable for the enzyme-assisted sequencing of oligonucleotides. There has recently been an increased interest in the use of nanopores for the fingerprinting of peptides and proteins, referred to as single-molecule nanopore spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!