AI Article Synopsis

  • The study investigates vertical profiles of PM2.5 and meteorological variables to understand how particulate matter interacts with the atmosphere during a pollution event in Nanjing, China.
  • Findings reveal a three-layer structure in PM concentration, with the highest accumulation at the top of the atmospheric boundary layer (ABL) during the day, and a less defined structure at night.
  • The results highlight the need to improve boundary layer models by incorporating the effects of aerosols to enhance predictions of ABL height and air quality.

Article Abstract

Vertical profiles of PM (i.e., particulate matter with an aerodynamic diameter of 2.5 µm or less) and meteorological variables (e.g., potential temperature, specific humidity) are crucial to understand formation mechanism including accumulation and dispersion process of PM, as well as interactions between aerosols and the atmospheric boundary layer (ABL). In this study, vertical distributions of PM are characterized through comprehensive analyses of vertical profiles measured by unmanned aerial vehicle (UAV), Micro Pulse LiDAR, and other surface observational data of a heavy aerosol pollution episode occurring on December 22-25, 2017 in Nanjing, China. Results show that PM profiles are characterized by a clear three-layer structure with near constant within the mixed layer, a transition layer with a large local gradient in the entrainment zone, and a layer with low concentration and small gradient in the free atmosphere, which shows a large similarity to that of specific humidity. The accumulation of aerosols is found near top of the ABL with the largest increase rate. Vertical distributions of PM and their evolution are largely constrained by the ABL thermodynamics during daytime, but show much less dependence on the ABL evolution at nighttime. PM provides an important feedback on the nocturnal boundary layer (NBL) leading to significant modification of vertical distributions of potential temperature and water vapor. Moreover, this study suggests that the current boundary layer parameterization scheme needs refinement with aerosol radiative effect included to further improve the ABL height (ABLH) and air quality predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.135329DOI Listing

Publication Analysis

Top Keywords

boundary layer
16
vertical distributions
12
atmospheric boundary
8
vertical profiles
8
potential temperature
8
specific humidity
8
layer
7
vertical
6
abl
5
vertical distribution
4

Similar Publications

The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.

View Article and Find Full Text PDF

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.

View Article and Find Full Text PDF

Successful navigation relies on reciprocal transformations between spatial representations in world-centered (allocentric) and self-centered (egocentric) frames of reference. The neural basis of allocentric spatial representations has been extensively investigated with grid, border, and head-direction cells in the medial entorhinal cortex (MEC) forming key components of a 'cognitive map'. Recently, egocentric spatial representations have also been identified in several brain regions, but evidence for the coexistence of neurons encoding spatial variables in each reference frame within MEC is so far lacking.

View Article and Find Full Text PDF

Contrasting Responses of Smoke Dispersion and Fire Emissions to Aerosol-Radiation Interaction during the Largest Australian Wildfires in 2019-2020.

Environ Sci Technol

January 2025

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.

View Article and Find Full Text PDF

NH release during the snow evaporation process in typical cities in Northeast China.

Sci Rep

January 2025

Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, No.5088 Xincheng Road, Changchun, 130118, Jilin Province, China.

NH is the most important alkaline gas in the atmosphere and functions as a precursor to secondary ammonium salts. Therefore, identifying its sources and quantifying its emissions is imperative. NH represents a principal component of atmospheric particulate pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!