Background: Studies in mammals proved dietary organic selenium (Se) being superior to inorganic Se regarding effects on growth performance, antioxidative status, immune response, and Se homeostasis. However, the picture of possible effects of different Se sources and - levels can be expanded. The present field study evaluated the effects on weight gain, hematological and selected biochemical variables as well as plasma concentrations of vitamin E (vitE), total Se and selenobiomolecules in piglets throughout the suckling period.
Methods: Piglets were monitored from birth to 38 days of age (d). The mother sows' diets were enriched with l-selenomethionine (SeMet-0.26 and -0.43 mg Se/kg feed) or sodium selenite (NaSe-0.40 and -0.60 mg Se/kg feed) from 1 month prior to farrowing until the end of lactation period. Piglets received pelleted feed supplemented with Se similarly to the sows' diets from one week of age. Selenite at 0.40 mg Se/kg (NaSe-0.40) represents a common Se source and -level in pig feed and served as control diet.
Results: From 24d, piglets in SeMet-groups had higher mean body weight (BW) compared with piglets from sows fed NaSe-0.40. Furthermore, from five-d and above, piglets from sows fed NaSe-0.60 had significantly higher BW than offspring from sows fed NaSe-0.40. Neonatal piglets in group SeMet-0.43 had significantly lower red blood cell counts (RBC), hemoglobin (Hgb) and hematocrit (Hct) concentrations compared with piglets from sows fed with NaSe-0.40. Neonatal and 5d-old piglets in group SeMet-0.26 showed higher gamma-glutamyl transferase activity than piglets in group NaSe-0.40. From five d and above, group NaSe-0.60 excelled with increased specific hematological variables culminating at age 38d with increased Hct, mean corpuscular volume (MCV), and MC hemoglobin (MCH) as well as increased activities of aspartate transaminase and lactate dehydrogenase compared with the other groups. Generally, offspring in the SeMet groups had higher total Se-concentrations in plasma than those from sows fed selenite, and showed a dose-response effect on plasma Se-concentrations. Furthermore, SeMet-fed piglets had higher plasma levels of the selenoproteins (Sel) glutathione peroxidase 3 (GPx3) and SelP as well as selenoalbumin. Plasma vitE levels were significantly negatively correlated with RBC throughout trial period.
Conclusions: Maternal supplementation with SeMet during gestation influenced hematology and clinical biochemistry in neonatal piglets in a different way than in offspring from sows receiving selenite enriched diets. Growth performance was positively influenced by both dietary Se source and Se level. Higher plasma levels of GPx3 observed in piglets receiving SeMet probably improved the protection against birth or growth related oxidative stress. These might prime the piglets for demanding situations as indicated by higher weight gain in offspring from sows fed with SeMet-supplemented diets. Our results on some enzyme activities might indicate that piglets fed NaSe-0.60 had to cope with increased levels of oxidative stress compared with those originating from sows fed SeMet or lower dietary levels of selenite. We assume that combining inorganic and organic Se sources in complete feed for breeding sows might be beneficial fro reproduction and the offspring's performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2019.126439 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!