A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acetylcholine promotes the self-renewal and immune escape of CD133+ thyroid cancer cells through activation of CD133-Akt pathway. | LitMetric

Acetylcholine promotes the self-renewal and immune escape of CD133+ thyroid cancer cells through activation of CD133-Akt pathway.

Cancer Lett

Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. Electronic address:

Published: February 2020

Nerves infiltrate the tumor microenvironment and stimulate the growth of cancer cells through the secretion of neurotransmitters. However, the contributions of nerves to the self-renewal capacity of cancer stem cells (CSCs) remain largely unknown. In this study, we found that CD133+ cancer cells were responsible for the initiation of thyroid cancer. Neurons were juxtaposed with CD133+ cells in thyroid cancer tissues. Acetylcholine, one of the most abundant neurotransmitters, promoted CD133 Y828 phosphorylation, and subsequently increased the interaction between CD133 and PI3K regulatory subunit p85, resulting in the activation of the PI3K-Akt pathway. Acetylcholine increased the self-renewal ability of CD133+ thyroid cancer cells through activation of CD133-Akt pathway. Furthermore, acetylcholine promoted the expression of the immune regulator PD-L1 through the activation of the CD133-Akt pathway, resulting in the resistance of CD133+ thyroid cancer cells to CD8 T cells. However, acetylcholine receptor antagonist 4-DAMP blocked the positive effects of acetylcholine on the self-renewal and immune escape of CD133+ thyroid cancer cells. Taken together, these data suggest that acetylcholine increases the self-renewal and immune escape abilities of CD133+ thyroid cancer cells through the activation of the CD133-Akt pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2019.12.009DOI Listing

Publication Analysis

Top Keywords

cancer cells
24
activation cd133-akt
16
cd133-akt pathway
16
cd133+ thyroid cancer
16
self-renewal immune
12
immune escape
12
thyroid cancer
12
cells activation
12
cancer
9
cells
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!