Zearalenone nephrotoxicity: DNA fragmentation, apoptotic gene expression and oxidative stress protected by Lactobacillus plantarum MON03.

Toxicon

Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia. Electronic address:

Published: February 2020

The present study was conducted to determine the abilities of the living Lactobacillus plantarum MON03 cells to degrade Zearalenone (ZEN) in liquid medium, and to elucidate the preventive effect in ZEN-contaminated balb/c mice showing kidney damage. The DNA fragmentation, Bcl-2 and Bax gene expression, caspase-3 activity, mRNA level of inflammation-regulating cytokines and histology of kidney tissues were examined. Female Balb/c mice were divided into four groups (10/group) and treated daily for 2 wk by oral gavage with lactic acid bacteria (L. plantarum MON03) 2 × 10 CFU/L, ~2 mg/kg only, ZEN (40 mg/kg BW) only, ZEN (40 mg/kg BW) + lactic acid bacteria (L. plantarum MON03, 2 × 10 CFU/L, ~2 mg/kg). Control group received vehicle. At the end of experiment, the kidney was collected for the determination of DNA fragmentation, Bcl-2 and Bax gene expression,caspase-3 activity, Malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) content, as well as for any alterations in expression of total antioxidant activity (TAC) and mRNA levels of inflammation-regulating cytokines (e.g., IL-10, IL-6, TNF-alpha). The results indicated that, kidney cells exposure to ZEN led to increased caspase-3 activity, MDA, and IL-10, IL-6, TNF-alpha and Bax mRNA levels, but decreased TAC content and down-regulated expression of GSH-Px and CAT and Bcl-2 mRNA. Co-treatment with ZEN plus LP suppressed the levels of DNA fragmentation; normalized kidney MDA and increased CAT levels, up-regulated expression of GSH-Px and CAT, and normalized mRNA levels of the analyzed cytokines. It's concluded that ZEN might have toxic effects in kidney. Further, it can be seen that use of LP induced protective effects against the oxidative stress and kidney toxicity of ZEN in part through adhesion (and so likely diminished bioavailability).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2019.12.004DOI Listing

Publication Analysis

Top Keywords

dna fragmentation
16
plantarum mon03
12
mrna levels
12
gene expression
8
oxidative stress
8
lactobacillus plantarum
8
balb/c mice
8
fragmentation bcl-2
8
bcl-2 bax
8
bax gene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!