Developing the cheap but superior adsorbents is of importance for environmental applications. In this paper, the Taguchi experimental design was applied to establish the optimum condition for the removal of crystal violet (CV) dye using keratin nanoparticles obtained from human hair waste. The average diameter of keratin particles was found about 63.7 nm, using DLS. Effective factors on the removal of CV dye including pH, adsorbent dose, temperature and contact time were considered using an L orthogonal array. The optimum condition was found to be pH = 9, adsorbent dose = 0.004 g, temperature = 25 °C and contact time = 10 h in the studied range for different parameters. ANOVA results indicated that the pH has the highest contribution percentage (75.97%) on the adsorption process. Moreover, the equilibrium data were well described by Freundlich Isotherm, indicating a multilayer adsorption process with a maximum adsorption capacity of 555.56 mg/g through an endothermic and spontaneous adsorption process that could be used for up to 5 cycles of adsorption process. The kinetic adsorption data were evaluated by different kinetic models, where the data followed a pseudo-second-order model with three steps of diffusion indicated by the intra-particle diffusion model. The obtained results clearly show the high potential of human hair-obtained keratin nanoparticles for removal of cationic dyes from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.065 | DOI Listing |
Sci Rep
December 2024
Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-8, Santa Maria, RS, 97105-900, Brazil.
This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.
The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China.
Catalytic upcycling of polyethylene terephthalate (PET) into high-value oxygenated products is a fascinating process, yet it remains challenging. Here, we present a one-step tandem strategy to realize the thermal catalytic oxidation upcycling of PET to terephthalic acid (TPA) and high-value glycolic acid (GA) instead of ethylene glycol (EG). By using the Au/NiO with rich oxygen vacancies as catalyst, we successfully accelerate the hydrolysis of PET, accompanied by obtaining 99% TPA yield and 87.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India. Electronic address:
In the present study, we prepared Gum Acacia-cl-Acrylic acid-co-itaconic acid (GA-cl-AA-co-IA) hydrogels by free radical crosslink polymerization method for the efficient removal of Rhodamine-B (RhB) dye. The hydrogels were further characterized by different characterization techniques: Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Atomic force microscopy (AFM), Brunuer-Emmett-Teller (BET) and field emission scanning electron microscopy (FE-SEM) to confirm synthesis. The synthesis parameters were optimized by swelling studies, which were performed by gravimetric analysis method.
View Article and Find Full Text PDFJACS Au
December 2024
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.
Establishing energy correlations among different metals can accelerate the discovery of efficient and cost-effective catalysts for complex reactions. Using a recently introduced coordination-based model, we can predict site-specific metal binding energies (Δ ) that can be used as a descriptor for chemical reactions. In this study, we have examined a range of metals including Ag, Au, Co, Cu, Ir, Ni, Os, Pd, Pt, Rh, and Ru and found linear correlations between predicted Δ and adsorption energies of CH and O (Δ and Δ ) at various coordination environments for all the considered metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!