Interaction of diazonamide A with tubulin.

Arch Biochem Biophys

Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA. Electronic address:

Published: February 2020

AI Article Synopsis

Article Abstract

[H]Diazonamide A ([H]DZA), prepared from the natural product isolated from Diazona angulata, bound to tubulin in larger aberrant assembly products (>500 kDa by sizing HPLC) but not to the αβ-tubulin heterodimer. The binding reaction was rapid, but stoichiometry was low. Stoichiometry was enhanced up to 8-fold by preincubating the tubulin in the reaction mixture prior to adding the [H]DZA. Although Mg did not affect binding stoichiometry, the cation markedly increased the number of tubulin rings (diameter about 50 nm) observed by negative stain electron microscopy. Bound [H]DZA did not dissociate from the tubulin oligomers despite extensive column chromatography but did dissociate in the presence of 8 M urea. With preincubated tubulin, a superstoichiometric amount of [H]DZA appeared to bind to the tubulin oligomeric structures, consistent with observations that neither nonradiolabeled DZA nor DZA analogues inhibited binding of [H]DZA to the tubulin oligomers. Only weak inhibition of binding was observed with multiple antimitotic compounds. In particular, no inhibition occurred with vinblastine, and the best inhibitors of those examined were dolastatin 10 and cryptophycin 1. We compared the aberrant assembly reaction induced by DZA to those induced by other antimitotic peptides and depsipeptides, in particular dolastatin 10, cryptophycin 1, and hemiasterlin, but the results obtained varied considerably in terms of requirements for maximal reactions, polymer morphology, and inhibitory effects observed with antimitotic compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047882PMC
http://dx.doi.org/10.1016/j.abb.2019.108217DOI Listing

Publication Analysis

Top Keywords

tubulin
8
aberrant assembly
8
tubulin oligomers
8
antimitotic compounds
8
dolastatin cryptophycin
8
[h]dza
5
interaction diazonamide
4
diazonamide tubulin
4
tubulin [h]diazonamide
4
[h]diazonamide [h]dza
4

Similar Publications

Data-Driven Equation-Free Dynamics Applied to Many-Protein Complexes: The Microtubule Tip Relaxation.

Biophys J

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States. Electronic address:

Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of GTP (guanosine-5'-triphosphate) to GDP (guanosine-5'-diphosphate) within the β-tubulin monomers. Understanding the equilibrium dynamics and the structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems.

View Article and Find Full Text PDF

Peri-centrosomal localization of small interfering RNAs in C. elegans.

Sci China Life Sci

January 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.

The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C.

View Article and Find Full Text PDF

NME7 maintains primary cilium assembly, ciliary microtubule stability, and Hedgehog signaling.

Life Sci Alliance

April 2025

https://ror.org/0040axw97 Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China

NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.

View Article and Find Full Text PDF

Dual-targeting inhibitors involving tubulin for the treatment of cancer.

Bioorg Chem

December 2024

Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India. Electronic address:

Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!