AI Article Synopsis

  • Salbutamol (SAL) is a substance harmful to human health and is banned as a growth promoter in livestock, prompting the need for its detection in meat and urine.
  • Researchers developed a competitive paper-based colorimetric immunoassay (PCI) using an Ag PO /Ag nanocomposite, which simplifies and cheapens the detection process while being sensitive and specific for SAL.
  • This new method is easy to fabricate with low-cost materials and requires only small amounts of samples and reagents, making it quicker and more efficient than traditional ELISA tests.

Article Abstract

Salbutamol (SAL) can cause potential hazards to human health and its use as a growth promoter in meat-producing animals is illegal. This work reports a novel approach for competitive paper-based colorimetric immunoassay (PCI) using the Ag PO /Ag nanocomposite as label for sensitive and specific determination of SAL in flesh of swine and urine. The Ag PO /Ag nanocomposite was synthesized by a one-step chemical bath method, which could instantly oxidize a chromogenic substrate for the color development under acidic conditions without the participation of H O . This approach provides high affinity between the Ag PO /Ag nanocomposite and the substrate (with the Michaelis-Menten constant of 0.44 mM). In addition, the fabrication process of the PCI was simple and cost-effective. Particularly, the novel PCI also exhibits simplicity and cost-effectiveness of the fabrication process through a simple wax screen-printing, which requires inexpensive equipment and material including a screen, wax, a squeegee, and a hair dryer. Under optimal conditions, the competitive PCI exhibited a linearity range of 0.025 to 1.00 µg/L. The developed approach offers advantages over the conventional ELISA for the purpose of routine use because it requires a shorter incubation time (<1 hr), significantly small volumes of reagents and samples (<100 µL each), and an inexpensive consumer-grade digital camera coupled with a simple gray-scale transformation of the RGB (Red Green Blue) color image for the purpose of quantification of the detection. PRACTICAL APPLICATION: Salbutamol (SAL) can cause potential hazards to human health and the use of which as growth promoter in meat-producing animals is illegal. This work introduces a novel approach for competitive immunoassay on paper-based colorimetric immunoassay using the Ag PO /Ag nanocomposite as the label (instead of using natural enzyme) for low-cost, sensitive, and specific determination of SAL residues at low level in flesh of swine and urine samples. The proposed approach offers advantages over the conventional ELISA for the purpose of routine use.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.14974DOI Listing

Publication Analysis

Top Keywords

/ag nanocomposite
16
paper-based colorimetric
8
colorimetric immunoassay
8
immunoassay pci
8
sensitive specific
8
flesh swine
8
swine urine
8
urine /ag
8
nanocomposite label
8
fabrication process
8

Similar Publications

Ball bearings face numerous challenges under harsh operating conditions of elevated pressure between the balls and other contacting parts of the bearing like drop in tribological properties. To address these challenges, this paper presents the first successful experimental investigation of incorporating an innovative hexagonal boron nitride (h-BN) into Aluminum-Carbon nanotube (Al-0.6 wt% CNTs) nanocomposites.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

Effect of Selenium, Copper and Manganese Nanocomposites in Arabinogalactan Matrix on Potato Colonization by Phytopathogens and .

Plants (Basel)

December 2024

Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, 37077 Göttingen, Germany.

The effect of chemically synthesized nanocomposites (NCs) of selenium (Se/AG NC), copper oxide (Cu/AG NC) and manganese hydroxide (Mn/AG NC), based on the natural polymer arabinogalactan (AG), on the processes of growth, development and colonization of potato plants in vitro was studied upon infection with the causative agent of potato blackleg-the Gram-negative bacterium -and the causative agent of ring rot-the Gram-positive bacterium (). It was shown that the infection of potatoes with reduced the root formation of plants and the concentration of pigments in leaf tissues. The treatment of plants with Cu/AG NC before infection with stimulated leaf formation and increased the concentration of pigments in them.

View Article and Find Full Text PDF

Sintering Ag Nanoclusters on TiO Nanoparticles as an Efficient Catalyst for Nitroarene Reduction.

Materials (Basel)

December 2024

Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.

Polydispersed Ag species-modified TiO samples with abundant oxygen vacancies were successfully prepared through the calcination of atomically precise Ag nanocluster-loaded TiO at an optimal temperature under a nitrogen atmosphere. The ligands of the Ag nanoclusters are removed by extracting lattice oxygen from TiO during the calcination, leading to the formation of CO, SO, and HO vapor. This process simultaneously induces Ag species sintering on the surface of TiO.

View Article and Find Full Text PDF

A simple and inexpensive process from natural phosphate in the presence of Ag ions was used to develop AgO-loaded hydroxyapatite nanocomposites. The structural and textural characterization of the nanocomposites suggests that the AgO nanoparticles are well dispersed on the hydroxyapatite (HAp). The prepared nanocomposites show efficient Rhodamine B (RhB) dye photocatalytic degradation in water under visible and UV-visible light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!