1. Three low molecular weight (12,000, 10,000 and 7,000) metal binding proteins have been isolated from the livers of normal and chondrodysplastic Alaskan Malamutes. 2. Comparison studies between kennel (mixed breed) dogs and both adult and immature Alaskan Malamutes suggested that the disturbance in trace mineral metabolism found in the Malamutes is almost entirely reflected in the 12,000 mol. wt species. 3. The major copper-inducible protein (10,000 mol. wt) observed in kennel dogs was not found to be inducible in Malamutes and contained constant ratios of both copper and zinc to protein in metal binding proteins isolated from the livers of both normal and dwarf Malamutes. 4. The copper and zinc found in the UM2 concentrates (mol. wt greater than 2000) of immature Malamutes showed very little affinity to the proteins and these metals were found chiefly in a peptide fraction which apparently serves as a reservoir from which the storage proteins obtain the metals that they bind. 5. Regression analysis indicated a statistically significant correlation between both copper and zinc concentrations and the carbohydrate concentration in the proteins investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0305-0491(79)90159-7 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.
To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.
View Article and Find Full Text PDFHeliyon
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Bangladesh.
A soda lime glass substrate is used for fabricating CuZnSnS (CZTS) thin films using copper (II) sulfide (CuS), zinc sulfide (ZnS), and tin sulfide (SnS) targets using an advanced co-sputtering deposition process. Following that, the films are annealed at 470 °C without sulfur (S). An algorithm based on the deposition rate of the previously specified targets set the co-sputtering condition, which maintains a deposition pressure of 5, 10, 15, and 20 mTorr.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemical Oceanography, Cochin University of Science and Technology, Kochi, Kerala, India.
The alga contains salt and heavy metals that are accumulated in algae poses a significant challenge to the safe use of algae in soil fertilization and other applications. This study examines the relevance of algal biomass as an environmentally friendly fertilizer, thereby contributing to sustainable coastal management practices. In this study, the hot and cold extraction method were done to obtain the Ulva rigida extract.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran.
Contamination of aquatic ecosystems with heavy metals poses a significant global issue due to its hazardous effects and persistent accumulation in living organisms. This study analyzed 51 fish samples from two species of Black Fish, Capoeta saadii and Capoeta trutta, collected from Iran's Khorramroud River during the summer and fall of 2022 to assess heavy metal accumulation in their gill, liver, and muscle tissues. After biometry, the studied tissues of each fish were isolated to measure the concentration of heavy metals (cadmium (Cd), zinc (Zn), chromium (Cr), lead (Pb), copper (Cu), and nickel (Ni)).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, PR China. Electronic address:
Although iron-doped hydroxyapatite (Fe-HAP) and its composites have been reported to immobilize arsenic (As), lead (Pb), and cadmium (Cd), its practical application is limited by the inefficient release of iron and phosphate. In this study, Ochrobactrum anthropic, a phosphate-solubilizing bacterium isolated from a lead-zinc smelting site, was employed to enhance multi-heavy metal immobilization in Fe-HAP-amended soils. O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!