Background: Malnutrition and muscle wasting are common in haemodialysis (HD) patients. Their pathogenesis is complex and involves many molecules including Myostatin (Mstn), which acts as a negative regulator of skeletal muscle. The characterisation of Mstn as a biomarker of malnutrition could be useful in the prevention and management of this condition. Previous studies have reported no conclusive results on the actual relationship between serum Mstn and wasting and malnutrition. So, in this study, we evaluated Mstn profile in a cohort of regular HD patients.

Methods: We performed a cross-sectional study, enrolling 37 patients undergoing bicarbonate-HD (BHD) or haemodiafiltration (HDF) at least for six months. 20 sex-matched healthy subjects comprised the control group. Mstn serum levels were evaluated by ELISA before and after HD. We collected clinical and biochemical data, evaluated insulin resistance, body composition, malnutrition [by Malnutrition Inflammation Score (MIS)] and tested muscle function (by hand-grip strength, six-minute walking test and a questionnaire on fatigue).

Results: Mstn levels were not significantly different between HD patients and controls (4.7 ± 2.8 vs 4.5 ± 1.3 ng/ml). In addition, while a decrease in Mstn was observed after HD treatment, there were no differences between BHD and HDF. In whole group of HD patients Mstn was positively correlated with muscle mass (r = 0.82, p < 0.001) and inversely correlated with age (r = - 0.63, p < 0.01) and MIS (r = - 0.39, p = 0.01). No correlations were found between Mstn and insulin resistance, such as between Mstn levels and parameters of muscle strength and fatigue. In multivariate analysis, Mstn resulted inversely correlated with fat body content (β = - 1.055, p = 0.002).

Conclusions: Circulating Mstn is related to muscle mass and nutritional status in HD patients, suggesting that it may have a role in the regulation of skeletal muscle and metabolic processes. However, also considering the lack of difference of serum Mstn between healthy controls and HD patients and the absence of correlations with muscle function tests, our findings do not support the use of circulating Mstn as a biomarker of muscle wasting and malnutrition in HD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6907124PMC
http://dx.doi.org/10.1186/s12882-019-1647-9DOI Listing

Publication Analysis

Top Keywords

mstn
8
patients
5
malnutrition
5
significance serum
4
serum myostatin
4
myostatin hemodialysis
4
hemodialysis patients
4
patients background
4
background malnutrition
4
muscle
4

Similar Publications

Application of Multiple Base-Editing Mediated by Polycistronic tRNA-gRNA-Processing System in Pig Cells.

Biotechnol Bioeng

January 2025

Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.

Gene edited pigs have extensive and important application value in the fields of agriculture and biomedicine. With the increasing demand in medical research and agricultural markets, more and more application scenarios require gene edited pigs to possess two or even more advantageous phenotypes simultaneously. The current production of multi gene edited pigs is inefficient, time-consuming, and costly, and there is an urgent need to develop efficient and accurate multi gene editing application technologies.

View Article and Find Full Text PDF

Myostatin is a paracrine myokine that regulates muscle mass in a variety of species, including humans. In this work, we report a functional role for myostatin as an endocrine hormone that directly promotes pituitary follicle-stimulating hormone (FSH) synthesis and thereby ovarian function in mice. Previously, this FSH-stimulating role was attributed to other members of the transforming growth factor-β family, the activins.

View Article and Find Full Text PDF

Cultured meat (CM) is derived from the in vitro myogenesis of muscle satellite (stem) cells (MSCs) and offers a promising alternative protein source. However, the development of a cost-effective media formulation that promotes cell growth has yet to be achieved. In this study, laxogenin (LAX) and 5-alpha-hydroxy-laxogenin (5HLAX) were computationally screened against myostatin (MSTN), a negative regulator of muscle mass, because of their antioxidant properties and dual roles as MSTN inhibitors and enhancers of myogenesis regulatory factors.

View Article and Find Full Text PDF

The Impact of MSTN Gene Editing on Meat Quality and Metabolomics: A Comparative Study Among Three Breeds of MSTN-Edited and Non-Edited Cattle.

Animals (Basel)

December 2024

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China.

Myostatin (MSTN) serves as a negative regulatory factor for muscle development. A reduction in MSTN gene expression can enhance muscle mass and increase meat production. However, whether it will impact meat quality traits remains one of the major concerns in the cattle breeding industry.

View Article and Find Full Text PDF

Background: This study examines genetic variations in the systemic oxygen transport cascade during exhaustive exercise in physically trained tactical athletes. Research goal: To update the information on the distribution of influence of eleven polymorphisms in ten genes, namely ACE (rs1799752), AGT (rs699), MCT1 (rs1049434), HIF1A (rs11549465), COMT (rs4680), CKM (rs8111989), TNC (rs2104772), PTK2 (rs7460 and rs7843014), ACTN3 (rs1815739), and MSTN (rs1805086)-on the connected steps of oxygen transport during aerobic muscle work.

Methods: 251 young, healthy tactical athletes (including 12 females) with a systematic physical training history underwent exercise tests, including standardized endurance running with a 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!