Urbanization significantly impacts the health and viability of wildlife populations yet it is not well understood how urban landscapes differ from non-urban landscapes with regard to their effects on wildlife. This study investigated the physiological response of eastern grey kangaroos (Macropus giganteus) to land use at a landscape scale. Using fecal glucocorticoid metabolites (FGM) we compared stress levels of kangaroo populations in urban and non-urban environments. We modeled FGM concentrations from 24 kangaroo populations against land use (urban or non-urban) and other anthropogenic and environmental factors, using a linear modeling approach. We found that land use was a significant predictor of FGM concentrations in eastern grey kangaroos with significant differences in concentrations between urban and non-urban populations. However, the direction of the relationship differed between northern and southern regions of Australia. In the northern study sites, kangaroos in urban areas had significantly higher FGM levels than their non-urban counterparts. In contrast, in southern sites, where kangaroos occur in high densities in many urban areas, urban kangaroos had lower FGM concentrations than non-urban kangaroos. Rainfall and temperature were also significant predictors of FGM and the direction of the relationship was consistent across both regions. These results are consistent with the contrasting abundance and persistence of kangaroo populations within the urban matrix between the two study regions. In the northern region many populations have declined over the last two decades and are fragmented, also occurring at lower densities than in southern sites. Our study indicates that it is the characteristics of urban environments, rather than the urban environment per se, which determines the extent of impacts of urbanization on kangaroos. This research provides insights into how the design of urban landscapes can influence large mammal populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.2055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!