Purpose: Besides mechanical loading of the back, physiological strain is an important risk factor for low-back pain. Recently a passive exoskeleton (SPEXOR) has been developed to reduce loading on the low back. We aimed to assess the effect of this device on metabolic cost of repetitive lifting. To explain potential effects, we assessed kinematics, mechanical joint work, and back muscle activity.

Methods: We recruited ten male employees, working in the luggage handling department of an airline company and having ample experience with lifting tasks at work. Metabolic cost, kinematics, mechanical joint work and muscle activity were measured during a 5-min repetitive lifting task. Participants had to lift and lower a box of 10 kg from ankle height with and without the exoskeleton.

Results: Metabolic cost was significantly reduced by 18% when wearing the exoskeleton. Kinematics did not change significantly, while muscle activity decreased by up to 16%. The exoskeleton took over 18-25% of joint work at the hip and L5S1 joints. However, due to large variation in individual responses, we did not find a significant reduction of joint work around the individual joints.

Conclusion: Wearing the SPEXOR exoskeleton decreased metabolic cost and might, therefore, reduce fatigue development and contribute to prevention of low-back pain during repetitive lifting tasks. Reduced metabolic cost can be explained by the exoskeleton substituting part of muscle work at the hip and L5S1 joints and consequently decreasing required back muscle activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-019-04284-6DOI Listing

Publication Analysis

Top Keywords

metabolic cost
24
repetitive lifting
16
joint work
16
muscle activity
12
low-back pain
8
kinematics mechanical
8
mechanical joint
8
work muscle
8
lifting tasks
8
work hip
8

Similar Publications

Brain-inspired wiring economics for artificial neural networks.

PNAS Nexus

January 2025

School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

Wiring patterns of brain networks embody a trade-off between information transmission, geometric constraints, and metabolic cost, all of which must be balanced to meet functional needs. Geometry and wiring economy are crucial in the development of brains, but their impact on artificial neural networks (ANNs) remains little understood. Here, we adopt a wiring cost-controlled training framework that simultaneously optimizes wiring efficiency and task performance during structural evolution of sparse ANNs whose nodes are located at arbitrary but fixed positions.

View Article and Find Full Text PDF

Background: Ribosomal protein S6 kinase 1 (p70S6K1) is a member of the AGC family of serine/threonine kinases which plays a role in various cellular processes, including protein synthesis, cell growth, and survival. Dysregulation of p70S6K1, characterized by its overexpression and/or hyperactivation, has been implicated in numerous human pathologies, particularly in several types of cancer. Therefore, generating active, recombinant p70S6K1 is critical for investigating its role in cancer biology and for developing novel diagnostic or therapeutic approaches.

View Article and Find Full Text PDF

Importance: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease and is projected to become the leading indication for liver transplant (LT) in the US. Understanding its clinical burden can help to identify opportunities for prevention and treatment.

Objective: To project the burden of MASLD in US adults from 2020 to 2050.

View Article and Find Full Text PDF

Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection.

Tissue Eng Regen Med

January 2025

Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.

Background: Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.

View Article and Find Full Text PDF

Introduction: Body composition is studied in athletes as a means of measuring physical fitness and progression of training. Athletes can utilize body composition in multiple ways to guide training toward athlete specific goals. Several different methods exist with varying levels of cost, invasiveness, reading complexity, and availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!