MicroRNAs (miRNAs) are small non-coding RNAs, which are involved in RNA silencing and post-transcriptional regulation of gene expression. Numerous studies have determined the expression of certain miRNAs in specific tissues and cell types, and their aberrant expression is associated with a variety of serious diseases such as cancers, immune-related diseases, and many infectious diseases. This suggests that miRNAs may be attractive and promising non-invasive biomarkers of diseases. In this study, we established a graphene oxide (GO)-based fluorescence/colorimetric dual sensing platform for miRNA by using a newly designed probe. The probe was designed to form a hairpin-like configuration with a fluorescent dye-labeled long tail, possessing a guanine (G)-rich DNAzyme domain in the loop region and target binding domain over the stem region and tail. By introducing this new hairpin-like probe in a conventional GO-based fluorescence platform, we observed both the miRNA-responsive color change by direct observation and sensitive fluorescence increase even below the nanomolar levels in a single solution without an additional separation step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-019-02269-0 | DOI Listing |
Chemosphere
December 2024
BRIC-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; BRIC- Regional Centre for Biotechnology (RCB), Faridabad- 121001, Haryana, India. Electronic address:
Endosulfan (Ed), a widely used organochlorine pesticide, is classified as a persistent organic pollutant (POP). Its long half-life, resistance to degradation, and bioaccumulation in the food chain contaminates soil, water, and air. Such widespread environmental damage triggers monitoring its levels for ensuring compliance with safety regulations and protecting public health.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China. Electronic address:
Small Methods
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, Leninsky pr., 31, building 4, Moscow, 119071, Russia.
A novel phthalocyanine-based hybrid nanofilm is for the first time successfully applied as an oxidative platform for surface enhanced Raman spectroscopy (SERS) sensing to fine-resolve Raman-inactive compounds. The hybrid is formed by self-assembly of zinc(II) 2,3,9,10,16,17,23,24-Octa[(3',5'-dicarboxy)-phenoxy]phthalocyaninate (ZnPc*) with the solid-supported monolayer of graphene oxide (GO) mediated by zinc acetate metal cluster. Atomic force microscopy, UV-vis and fluorescence spectroscopies confirm that this simple coordination motive in combination with molecular structure of ZnPc* prevents contact quenching of the light-excited triplet state through aromatic stacking with GO particles.
View Article and Find Full Text PDFChem Biol Interact
December 2024
Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville. Spain.
Dodecyl amine functionalized reduced graphene oxide (DA-rGO) and [2-(methacryloyloxy) ethyl] trimethylammonium chloride functionalized rGO (MTAC-rGO) have been developed and characterised for their further use in the food packaging industry as food contact materials. But before their application, an authorization procedure is required in which their safety plays a key role. Therefore, the aim of this work was to evaluate their toxicity with focus on two different toxicity mechanisms: genotoxicity and immunotoxicity.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region. Electronic address:
Developing highly efficient bimetallic metal-organic frameworks (MOFs) as catalysts for Fenton-like reactions holds significant promise for decontamination processes. Although MOFs with excellent decontamination capabilities are achievable, ensuring their long-term stability, especially in the organoarsenic harmless treatment, remains a formidable challenge. Herein, we proposed a unique nanoconfinement strategy using graphene oxide (GO)-supported Prussian blue analogs (PBA) as catalytic membrane, which modulated the peroxymonosulfate (PMS) activation in p-arsanilic acid (p-ASA) degradation from traditional radical pathways to a synergy of both radical and non-radical pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!