Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rate of polymerization decides growth and hence electrochemical properties of the electrodes of conducting polymers synthesized by SILAR method are affected by molar concentration of the precursors. Present work describes the effect of molar concentration of Pyrrole monomer on the rate of polymerization and hence the electrochemical performance of highly pristine PPy flexible electrodes. 304 grade flexible stainless steel strips were coated with the PPy using aqueous solutions of 0.025M, 0.05 M and 0.1M pyrrole in 0.5 M HSO separately and 30% HO. XRD patterns substantiate the formation of amorphous PPy. The peak at 1560 cm in FTIR confirms the formation of polypyrrole. SEM images of the FEs prepared using different molar concentration shows gradual superficial growth. All FEs were electrochemically analyzed for their supercapacitive performance by the electrochemical techniques like cyclic voltammetry, galvanostatic charge discharge study and electrochemical impedance spectroscopy. It was found that, the specific capacitance increases with molar concentration of pyrrole. The pristine PPy FEs prepared with 0.1 M Pyrrole exhibit specific capacitance as high as 899.14 Fg at 5 mVs in 0.2 M NaSO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889038 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e02909 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!