Small supernumerary marker chromosomes (sSMCs), equal in size or smaller than chromosome 20 of the same metaphase, can hardly be identified through traditional banding technique. They are usually associated with intelligent disability, growth retardation, and infertility, but the genotype-phenotype correlations are still complicated for their complex origins and constitutions. Herein, we identified a 26-year-old Chinese infertile male who carried a mosaic sSMC and was diagnosed as severe oligospermia. The G-banding analysis initially described his karyotype as mos 47, XY, +mar[32]/46, XY[18]. The chromosomal microarray analysis results showed a 25.5 Mb gain in Yp11.31q11.23 and a 0.15 Mb loss in Yq12. Two signals were discovered in the "seemingly" normal chromosome Y in both cell lines using probe: one normal was located on the distal tip of the short arm of chromosome Y while the other was located on the terminal of long arm in the same chromosome Y. The sSMC(Y) was finally identified as der(Y) (pter ⟶ q11.23) (). To our knowledge, the chromosomal Y anomalies, gene translocated from der(Y) (pter ⟶ q11.23) to qter of normal chromosome Y, were not reported before. Our findings indicated that the mosaic presence of sSMC(Y) may be the main cause of severe oligospermia although no other apparent abnormalities were observed in the proband. Further research on association between sSMC(Y) and spermatogenesis impairment should be investigated. It is recommended measures of traditional and molecular cytogenetic analysis should be taken to determine the origins and constitutions of sSMC so as to offer more appropriate genetic counseling for the infertile sSMC carriers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885818PMC
http://dx.doi.org/10.1155/2019/9398275DOI Listing

Publication Analysis

Top Keywords

small supernumerary
8
supernumerary marker
8
infertile male
8
origins constitutions
8
severe oligospermia
8
normal chromosome
8
arm chromosome
8
dery pter ⟶ q1123
8
chromosome
7
molecular characterization
4

Similar Publications

Microcephaly affects 1 in 2,500 babies per year. Primary microcephaly results from aberrant neurogenesis leading to a small brain at birth. This is due to altered patterns of proliferation and/or early differentiation of neurons.

View Article and Find Full Text PDF

Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation.

View Article and Find Full Text PDF

Acanthocephalan parasites are often overlooked in many areas of research, and satellitome and cytogenetic analyzes are no exception. The species of the genus Acanthocephalus are known for their very small chromosomes with ambiguous morphology, which makes karyotyping difficult. In this study, we performed the first satellitome analysis of three Acanthocephalus species to identify species- and chromosome-specific satellites that could serve as cytogenetic markers.

View Article and Find Full Text PDF

Background: Klinefelter syndrome (KS) is an uncommonly recognised condition typified by gynaecomastia, small testes and aspermatogenesis. It is caused by a supernumerary X chromosome, resulting in a 47 XXY karyotype. Since its first description, the phenotype of KS has evolved and there is a much greater appreciation of the subtle features of the condition.

View Article and Find Full Text PDF

Objective: To evaluate the frequency of tooth anomalies (TA) in the deciduous and permanent dentition of patients with nonsyndromic orofacial clefts (NSOC), both inside and outside the cleft area.

Methods: The following databases were searched for the relevant literature: Cochrane, OVID, SciELO, Embase, Livivo, PubMed, Scopus, and Web of Science. The risk of bias was analyzed using the Joanna Briggs Institute.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!