Brain metastases are the most common intracranial tumor in adults and are associated with poor patient prognosis and median survival of only a few months. Treatment options for brain metastasis patients remain limited and largely depend on surgical resection, radio- and/or chemotherapy. The development and pre-clinical testing of novel therapeutic strategies require reliable experimental models and diagnostic tools that closely mimic technologies that are used in the clinic and reflect histopathological and biochemical changes that distinguish tumor progression from therapeutic response. In this study, we sought to test the applicability of magnetic resonance (MR) spectroscopy in combination with MR imaging to closely monitor therapeutic efficacy in a breast-to-brain metastasis model. Given the importance of radiotherapy as the standard of care for the majority of brain metastases patients, we chose to monitor the post-irradiation response by magnetic resonance spectroscopy (MRS) in combination with MR imaging (MRI) using a 7 Tesla small animal scanner. Radiation was applied as whole brain radiotherapy (WBRT) using the image-guided Small Animal Radiation Research Platform (SARRP). Here we describe alterations in different metabolites, including creatine and N-acetylaspartate, that are characteristic for brain metastases progression and lactate, which indicates hypoxia, while choline levels remained stable. Radiotherapy resulted in normalization of metabolite levels indicating tumor stasis or regression in response to treatment. Our data indicate that the use of MR spectroscopy in addition to MRI represents a valuable tool to closely monitor not only volumetrical but also metabolic changes during tumor progression and to evaluate therapeutic efficacy of intervention strategies. Adapting the analytical technology in brain metastasis models to those used in clinical settings will increase the translational significance of experimental evaluation and thus contribute to the advancement of pre-clinical assessment of novel therapeutic strategies to improve treatment options for brain metastases patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890861 | PMC |
http://dx.doi.org/10.3389/fonc.2019.01324 | DOI Listing |
Pituitary
January 2025
Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, 2nd Floor, Miami, Fl, 33136, USA.
Purpose: Prolonged length of stay (PLOS) can lead to resource misallocation and higher complication risks. However, there is no consensus on defining PLOS for endoscopic transsphenoidal pituitary surgery (ETPS). Therefore, we investigated the impact of varying PLOS definitions on factors associated with PLOS in patients undergoing ETPS.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFPituitary
January 2025
Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
Purpose: Pituitary adenomas, despite their histologically benign nature, can severely impact patients' quality of life due to hormone hypersecretion. Invasion of the medial wall of the cavernous sinus (MWCS) by these tumors complicates surgical outcomes, lowering biochemical remission rates and increasing recurrence. This study aims to share our institutional experience with the selective resection of the MWCS in endoscopic pituitary surgery.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the First People's Hospital of Changzhou, Jiangsu Province, Changzhou 213000, China.
Methods Cell Biol
January 2025
Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:
Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!