and Models for Functional Testing of Therapeutic Anti-scarring Drug Targets in Keloids.

Adv Wound Care (New Rochelle)

Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.

Published: December 2019

Keloids are benign fibro-proliferative raised dermal lesions that spread beyond the original borders of the wound, continue to grow, rarely regress, and are the most common in pigmented individuals after an abnormal wound healing response. The current treatment failure and respective challenges involved highlighting the underlying issue that the etiopathogenesis of keloids is still not well understood. Disease models are required to better understand the disease pathogenesis. It is not possible to establish keloids in animals because of the uniqueness of this disease to human skin. To address this challenge, along these lines, non-animal reproducible models are vital in investigating molecular mechanisms of keloid pathogenesis and therapeutics development. Various non-animal models have been developed to better understand the molecular mechanisms involved in keloid scarring and aid in identifying and evaluating the therapeutic potential of novel drug candidates. In this scenario, the current review aims at describing monocultures, co-cultures, organotypic cultures, and whole skin keloid tissue organ culture models. Current treatment options for keloids are far from securing a cure or preventing disease recurrence. Identifying universally accepted effective therapy for keloids has been hampered by the absence of appropriate disease model systems. Animal models do not accurately mimic the disease, thus non-animal model systems are pivotal in keloid research. The use of these models is essential not only for a better understanding of disease biology but also for identifying and evaluating novel drug targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904937PMC
http://dx.doi.org/10.1089/wound.2019.1040DOI Listing

Publication Analysis

Top Keywords

drug targets
8
current treatment
8
better understand
8
molecular mechanisms
8
identifying evaluating
8
novel drug
8
model systems
8
models
7
disease
7
keloids
6

Similar Publications

Objective: Patients with drug-resistant epilepsy (DRE) are often referred for phase II evaluation with stereo-electroencephalography (SEEG) to identify a seizure onset zone for guiding definitive treatment. For patients without a focal seizure onset zone, neuromodulation targeting the thalamic nuclei-specifically the centromedian nucleus, anterior nucleus of the thalamus, and pulvinar nucleus-may be considered. Currently, thalamic nuclei selection is based mainly on the location of seizure onset, without a detailed evaluation of their network involvement.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) have demonstrated promise in the treatment of various cancers. Single-drug ICI therapy (immuno-oncology [IO] monotherapy) that targets PD-L1 is the standard of care in patients with advanced non-small cell lung cancer (NSCLC) with PD-L1 expression ≥50%. We sought to find out if a machine learning (ML) algorithm can perform better as a predictive biomarker than PD-L1 alone.

View Article and Find Full Text PDF

Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance.

View Article and Find Full Text PDF

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

Introduction: Tackling the inertia of growing threat of antimicrobial resistance (AMR) requires changes in how antibiotics are prescribed and utilized. The monitoring of antimicrobial prescribing in hospitals is a critical component in optimizing antibiotic use. Point prevalence surveys (PPSs) enable the surveillance of antibiotic prescribing at the patient level in small hospitals that lack the resources to establish antimicrobial stewardship programs (ASP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!