Anthropogenic activities affect fish populations worldwide. River dams have profound impacts on ecosystems by changing habitats and hindering migration. In an effort to counteract such effects, a range of mitigation measures have been installed at hydroelectric power plants. However, not all individuals in a population use these measures, potentially creating strong selection processes at hydroelectric power plants. This may be especially true during migration; fish can get heavily delayed or pass through a hydropower turbine, thus facing increased mortality compared with those using a safe bypass route. In this study, we quantify migration route choices of descending wild passive integrated transponder (PIT)-tagged Atlantic salmon smolts released upstream from a hydroelectric plant. We demonstrate how only a few metres' displacement of bypass canals can have a large impact on the fish guidance efficiency (FGE). The proportion of fish using the bypasses increased from 1% to 34% when water was released in surface gates closer to the turbine intake. During a period of low FGE, we observed two different smolt migratory strategies. While some individuals spent little time in the forebay before migrating through the turbine tunnel, others remained there. We suggest that these groups represent different behavioural types, and that suboptimal mitigation measures at hydropower intakes may, therefore, induce strong selection on salmon behavioural traits. The ultimate outcome of these selection mechanisms is discussed in light of potential trade-offs between turbine migration mortality coast and optimal sea entrance timing survival benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894575PMC
http://dx.doi.org/10.1098/rsos.190989DOI Listing

Publication Analysis

Top Keywords

mitigation measures
8
hydroelectric power
8
power plants
8
strong selection
8
migratory passage
4
passage structures
4
structures hydropower
4
hydropower plants
4
plants potential
4
potential physiological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!