Adipose Stem Cell-Based Clinical Strategy for Neural Regeneration: A Review of Current Opinion.

Stem Cells Int

State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Published: November 2019

Nerve injury is a critical problem in the clinic. Nerve injury causes serious clinic issues including pain and dysfunctions for patients. The disconnection between damaged neural fibers and muscles will result in muscle atrophy in a few weeks if no treatment is applied. Moreover, scientists have discovered that nerve injury can affect the osteogenic differentiation of skeletal stem cells (SSCs) and the fracture repairing. In plastic surgery, muscle atrophy and bone fracture after nerve injury have plagued clinicians for many years. How to promote neural regeneration is the core issue of research in the recent years. Without obvious effects of traditional neurosurgical treatments, research on stem cells in the past 10 years has provided a new therapeutic strategy for us to address this problem. Adipose stem cells (ASCs) are a kind of mesenchymal stem cells that have differentiation potential in adipose tissue. In the recent years, ASCs have become the focus of regenerative medicine. They play a pivotal role in tissue regeneration engineering. As a type of stem cell, ASCs are becoming popular for neuroregenerative medicine due to their advantages and characteristics. In the various diseases of the nervous system, ASCs are gradually applied to treat the related diseases. This review article focuses on the mechanism and clinical application of ASCs in nerve regeneration as well as the related research on ASCs over the past decades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885831PMC
http://dx.doi.org/10.1155/2019/8502370DOI Listing

Publication Analysis

Top Keywords

nerve injury
16
stem cells
16
adipose stem
8
neural regeneration
8
muscle atrophy
8
ascs
6
nerve
5
stem
5
stem cell-based
4
cell-based clinical
4

Similar Publications

The Role of Sulfatides in Liver Health and Disease.

Front Biosci (Landmark Ed)

January 2025

Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.

Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

Effects of Spinal Cord Stimulation in Patients with Small Fiber and Associated Comorbidities from Neuropathy After Multiple Etiologies.

J Clin Med

January 2025

Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.

The aim of this study was to evaluate the effects of spinal cord stimulation (SCS) on pain, neuropathic symptoms, and other health-related metrics in patients with chronic painful peripheral neuropathy (PN) from multiple etiologies. A prospective single center observational longitudinal cohort study assessed SCS efficacy from April 2023 to May 2024, with follow-ups at 2, 4, 6, and 12 months in 19 patients suffering from the painful polyneuropathy of diverse etiologies: diabetic (DPN), idiopathic (CIAP), chemotherapy-induced (CIPN), and others. Patients were implanted with a neurostimulator (WaveWriter Alpha, Boston Scientific Corporation, Valencia, CA, USA) and percutaneous leads targeting the lower limbs (T10-T11) and, if necessary, the upper limbs (C4-C7).

View Article and Find Full Text PDF

Imaging Retrospective Study Regarding the Variability of the Osseous Landmarks for IAN Block.

J Clin Med

January 2025

Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania.

: The aim of this study is to identify the most accurate and consistent landmarks for determining the precise location of the mandibular foramen (MF) and the mandibular ramus, suggesting appropriate adjustments to anesthesia techniques based on these variations in order to improve the success rate of the inferior alveolar nerve (IAN) block. : CT scans of the mandibles from 100 patients were analyzed to measure the distance between the MF and various landmarks, including the sigmoid notch, gonion, posterior and anterior margins of the ramus, temporal crest, and the mandibular ramus height from the condyle to the gonion. The width of the mandibular ramus was also assessed, with correlations made to age and gender.

View Article and Find Full Text PDF

Thoracic outlet syndrome (TOS) is an uncommon condition defined by the compression of neurovascular structures within the thoracic outlet. When conservative management strategies fail to alleviate symptoms, surgical decompression becomes necessary. The purpose of this study is to evaluate and compare the efficacy and safety of regional anesthesia (RA) using spontaneous breathing in contrast to general anesthesia (GA) for patients undergoing surgical intervention for TOS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!