Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The importance of well trained and stable neck flexors and extensors as well as trunk muscles for intentional headers in soccer is increasingly discussed. The neck flexors and extensors should ensure a coupling of trunk and head at the time of ball contact to increase the physical mass hitting the ball and reduce head acceleration. The aim of the study was to analyze the influence of a 6-week strength training program (neck flexors, neck extensors) on the acceleration of the head during standing, jumping and running headers as well as after fatigue of the trunk muscles on a pendulum header. A total of 33 active male soccer players (20.3 ± 3.6 years, 1.81 ± 0.07 m, 75.5 ± 8.3 kg) participated and formed two training intervention groups (IG1: independent adult team, IG2: independent youth team) and one control group (CG: players from different teams). The training intervention consisted of three exercises for the neck flexors and extensors. The training effects were verified by means of the isometric maximum voluntary contraction (IMVC) measured by a telemetric Noraxon DTS force sensor. The head acceleration during ball contact was determined using a telemetric Noraxon DTS 3D accelerometer. There was no significant change of the IMVC over time between the groups (F=2.265, p=.121). Head acceleration was not reduced significantly for standing (IG1 0.4 ± 2.0, IG2 0.1 ± 1.4, CG -0.4 ± 1.2; F = 0.796, p = 0.460), jumping (IG1-0.7 ± 1.4, IG2-0.2 ± 0.9, CG 0.1 ± 1.2; F = 1.272, p = 0.295) and running (IG1-1.0 ± 1.9, IG2-0.2 ± 1.4, CG -0.1 ± 1.6; F = 1.050, p = 0.362) headers as well as after fatigue of the trunk musculature for post-jumping (IG1-0.2 ± 2.1, IG2-0.6 ± 1.4; CG -0.6 ± 1.3; F = 0.184, p = 0.833) and post-running (IG1-0.3 ± 1.6, IG2-0.7 ± 1.2, CG 0.0 ± 1.4; F = 0.695, p = 0.507) headers over time between IG1, IG2 and CG. A 6-week strength training of the neck flexors and neck extensors could not show the presumed preventive benefit. Both the effects of a training intervention and the consequences of an effective intervention for the acceleration of the head while heading seem to be more complex than previously assumed and presumably only come into effect in case of strong impacts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873131 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!