Background: Broad-scale evidence has shown the significant association between ambient air pollutants and the development of tuberculosis (TB). However, the impact of air quality on the risk of TB in Taiwan is still poorly understood.
Objective: To develop a probabilistic integrated population-level risk assessment approach for evaluating the contribution of ambient air pollution exposure to the risk of TB development among different regions of Taiwan.
Materials And Methods: A Bayesian-based probabilistic risk assessment model was implemented to link exposure concentrations of various air pollutants quantified in a probabilistic manner with the population-based exposure-response models developed by using an epidemiological investigation.
Results: The increment of the risk of TB occurred in a region with a higher level of air pollution, indicating a strong relationship between ambient air pollution exposures and TB incidences. Carbon monoxide (CO) exposure showed the highest population attributable fraction (PAF), followed by nitrogen oxides (NO) and nitrogen dioxide (NO) exposures. In a region with higher ambient air pollution, it is most likely (80% risk probability) that the contributions of CO exposure to development of TB were 1.6-12.2% (range of median PAFs), whereas NO and NO exposures contributed 1.2-9.8% to developing TB.
Conclusion: Our findings provide strong empirical support for the hypothesis and observations from the literature that poor air quality is highly likely to link aetiologically to the risk of TB. Therefore, substantial reductions in CO, NO, and NO exposures are predicted to have health benefits to susceptible and latently infected individuals that provide complementary mitigation efforts in reducing the burden of TB. Considering that people continue to be exposed to both TB bacilli and ambient air pollutants, our approach can be applied for different countries/regions to identify which air pollutants contribute to a higher risk of TB in order to develop potential mitigation programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902850 | PMC |
http://dx.doi.org/10.2147/IDR.S227823 | DOI Listing |
Front Public Health
January 2025
Shandong Academy of Chinese Medicine, Jinan, China.
Background: Night sweats are a condition in which an individual sweats excessively during sleep without awareness, and stops when they wake up. Prolonged episodes of night sweats might result in the depletion of trace elements and nutrients, affecting the growth and development of children.
Purpose: To investigate the relationship between sweat nights and season.
Environ Epidemiol
February 2025
Saarland University, Institute of Sports and Preventive Medicine, Campus Geb B8 2, Saarbrücken, Germany.
A cross-sectional analysis was performed to investigate associations between environmental temperatures and injury occurrence in two professional male football (soccer) leagues. Data from seven seasons of the German Bundesliga (2142 matches) and four seasons of the Australian A-League (470 matches) were included. Injuries were collated via media reports for the Bundesliga and via team staff reports in the A-League and comprised injury incidence, mechanisms (contact, noncontact), locations (e.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Energy System Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, No. 15, Pardis St., Molasadra Ave., Vanak Sq., Tehran, Iran.
The rising global demand for air conditioning systems, driven by increasing temperatures and urbanization, has led to higher energy consumption and greenhouse gas emissions. HVAC systems, particularly AC, account for nearly half of building energy use, highlighting the need for efficient cooling solutions. Passive cooling, especially radiative cooling, offers potential to reduce cooling loads and improve energy efficiency.
View Article and Find Full Text PDFAnn Am Thorac Soc
January 2025
University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, California, United States.
Rationale: Globally, in 2019, chronic obstructive pulmonary disease (COPD) was the third leading cause of death. While tobacco smoking is the predominant risk factor, the role of long-term air pollution exposure in increasing risk of COPD remains unclear. Moreover, there are few studies that have been conducted in racial and ethnic minoritized and socioeconomically diverse populations, while accounting for smoking history and other known risk factors.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
Confocal microscopy is an invaluable tool for studying fluorescent materials and finds a wide application in biology and in quantum sensing. Usually, these experiments are performed under ambient conditions, but many materials are air sensitive (for example, black phosphorus) and degrade quickly under the strong laser irradiance. Here, we present a glovebox-integrated confocal microscope designed for nitrogen-vacancy (NV) center-based nano-scale sensing and NMR spectroscopy in an inert gas atmosphere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!