Defined factors to reactivate cell cycle activity in adult mouse cardiomyocytes.

Sci Rep

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.

Published: December 2019

Adult mammalian cardiomyocytes exit the cell cycle during the neonatal period, commensurate with the loss of regenerative capacity in adult mammalian hearts. We established conditions for long-term culture of adult mouse cardiomyocytes that are genetically labeled with fluorescence. This technique permits reliable analyses of proliferation of pre-existing cardiomyocytes without complications from cardiomyocyte marker expression loss due to dedifferentiation or significant contribution from cardiac progenitor cell expansion and differentiation in culture. Using this system, we took a candidate gene approach to screen for fetal-specific proliferative gene programs that can induce proliferation of adult mouse cardiomyocytes. Using pooled gene delivery and subtractive gene elimination, we identified a novel functional interaction between E2f Transcription Factor 2 (E2f2) and Brain Expressed X-Linked (Bex)/Transcription elongation factor A-like (Tceal) superfamily members Bex1 and Tceal8. Specifically, Bex1 and Tceal8 both preserved cell viability during E2f2-induced cell cycle re-entry. Although Tceal8 inhibited E2f2-induced S-phase re-entry, Bex1 facilitated DNA synthesis while inhibiting cell death. In sum, our study provides a valuable method for adult cardiomyocyte proliferation research and suggests that Bex family proteins may function in modulating cell proliferation and death decisions during cardiomyocyte development and maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906479PMC
http://dx.doi.org/10.1038/s41598-019-55027-8DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
adult mouse
12
mouse cardiomyocytes
12
adult mammalian
8
bex1 tceal8
8
cell
7
adult
6
cardiomyocytes
5
defined factors
4
factors reactivate
4

Similar Publications

Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.

View Article and Find Full Text PDF

Background: To evaluate the real-world surgical and pathological outcomes following neoadjuvant nivolumab in combination with chemotherapy in a multicentre national cohort of patients.

Methods: Retrospective analysis on consecutive patients treated in three tertiary referral hospitals in UK with neoadjuvant chemotherapy and immunotherapy (nivolumab) for stage II-IIIB nonsmall cell lung cancer (March 2023-May 2024). Surgical and pathological outcomes were assessed.

View Article and Find Full Text PDF

Designing an anticancer Pd(II) complex as poly(ADP-ribose) polymerase 1 inhibitor.

Int J Biol Macromol

January 2025

School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:

Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.

View Article and Find Full Text PDF

Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.

View Article and Find Full Text PDF

Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells.

Cell Metab

January 2025

Henan Academy of Sciences, Zhengzhou 450000, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Cellular senescence, a hallmark of aging, involves a stable exit from the cell cycle. Senescent cells (SnCs) are closely associated with aging and aging-related disorders, making them potential targets for anti-aging interventions. In this study, we demonstrated that human embryonic stem cell-derived exosomes (hESC-Exos) reversed senescence by restoring the proliferative capacity of SnCs in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!