Bioprinting is an emerging and promising technique for fabricating 3D cell-laden constructs for various biomedical applications. In this paper, we employed 3D bioprinted GelMA-based models to investigate the trophoblast cell invasion phenomenon, enabling studies of key placental functions. Initially, a set of optimized material and process parameters including GelMA concentration, UV crosslinking time and printing configuration were identified by systematic, parametric study. Following this, a multiple-ring model (2D multi-ring model) was tested with the HTR-8/SVneo trophoblast cell line to measure cell movement under the influence of EGF (chemoattractant) gradients. In the multi-ring model, the cell front used as a cell invasion indicator moves at a rate of 85 ± 33 µm/day with an EGF gradient of 16 µM. However, the rate was dramatically reduced to 13 ± 5 µm/day, when the multi-ring model was covered with a GelMA layer to constrain cells within the 3D environment (3D multi-ring model). Due to the geometric and the functional limitations of multi-ring model, a multi-strip model (2D multi-strip model) was developed to investigate cell movement in the presence and absence of the EGF chemoattractant. The results show that in the absence of an overlying cell-free layer of GelMA, movement of the cell front shows no significant differences between control and EGF-stimulated rates, due to the combination of migration and proliferation at high cell density (6 × 10 cells/ml) near the GelMA surface. When the model was covered by a layer of GelMA (3D multi-strip model) and migration was excluded, EGF-stimulated cells showed an invasion rate of 21 ± 3 µm/day compared to the rate for unstimulated cells, of 5 ± 4 µm/day. The novel features described in this report advance the use of the 3D bioprinted placental model as a practical tool for not only measurement of trophoblast invasion but also the interaction of invading cells with other tissue elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906490 | PMC |
http://dx.doi.org/10.1038/s41598-019-55052-7 | DOI Listing |
Arch Biochem Biophys
November 2024
Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy. Electronic address:
The vanillyl alcohol oxidase/p-cresol methylhydroxylase (VAO/PCMH) flavoprotein family comprises a broad spectrum of enzymes capable of catalyzing the oxidative bioconversions of various substrates. Among them, pinoresinol hydroxylase (PinH) from the 4-alkylphenol oxidizing subgroup initiates the oxidative degradation of (+)-pinoresinol, a lignan important for both lignin structure and plant defense. In this study, we present a detailed biochemical and structural characterization of PinH from Pseudomonas sp.
View Article and Find Full Text PDFThis paper investigates the propagation of Gaussian array beams (GABs) through seawater-to-air in the presence of oceanic turbulence, atmospheric turbulence, and wave foams. Specifically, we focus on the intensity distribution of diverse typical GAB structures (ring, multi-ring, and rectangle). Then, an innovative intensity analysis model to calculate the average intensity in each medium is proposed.
View Article and Find Full Text PDFRev Sci Instrum
December 2023
Key Laboratory of High-Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.
A photothermal vortex interferometer (PTVI) is proposed to fill the gap of full-field measurement of the laser-induced nanoscale thermal lens dynamics of optical elements. The PTVI produces a multi-ring petal-like interferogram by the coaxial coherent superposition of the high-order conjugated Laguerre-Gaussian beams. The non-uniform optical path change (OPC) profile resulting from the thermal lens causes the petals of the interferogram at the different radii to shift by the different azimuths.
View Article and Find Full Text PDFBiomech Model Mechanobiol
April 2023
School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
It remains unknown that the degree of bias in computational fluid dynamics results without considering coronary cyclic bending. This study aims to investigate the influence of different rates of coronary cyclic bending on coronary hemodynamics. To model coronary bending, a multi-ring-controlled fluid-structural interaction model was designed.
View Article and Find Full Text PDFFront Neurosci
April 2022
Hamamatsu BioPhotonics Innovation Chair, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.
In two-photon microscopy, aberration correction is an essential technique for realizing high resolution in deep regions. A spatial light modulator (SLM) incorporated into an optical system for two-photon microscopy performs pre-compensation on the wavefront of the excitation beam, restoring the resolution close to the diffraction limit even in the deep region of a biological sample. If a spatial resolution smaller than the diffraction limit can be achieved along with aberration correction, the importance of two-photon microscopy for deep region observation will increase further.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!