The Earth has now warmed ~1.0 °C since the period 1850-1900, due in large part to the anthropogenic addition of greenhouse gases to the atmosphere. Most strategies to address this warming have called for a reduction of emissions and, often, accompanying removal of greenhouse gases. Other proposals suggest masking the increased radiative forcing by an increase in particles and/or clouds to increase scattering of incoming solar radiation. Two related recent proposals have suggested addition of calcite particles to the stratosphere, which one model suggests may enhance ozone. Here we show that the interaction of calcite with acidic materials in the stratosphere results in a more complex aerosol than has been previously considered, including aqueous and hydrate phases that can lead to ozone loss. Our study suggests particle addition to the stratosphere could also perturb global radiative balance by affecting high altitude cloud formation and properties. Experimental and modeling results suggest particles will act as the nucleation sites for polar stratospheric cloud ice and, after sedimentation into the troposphere, impact cirrus clouds in the absence of other efficient ice nucleating particles. These results show that an overly simplistic set of assumptions regarding intentional particle emissions to the atmosphere can lead to incorrect estimates of the radiative effect and fail to identify unintended consequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906325PMC
http://dx.doi.org/10.1038/s41598-019-53595-3DOI Listing

Publication Analysis

Top Keywords

greenhouse gases
8
unanticipated side
4
side effects
4
effects stratospheric
4
stratospheric albedo
4
albedo modification
4
modification proposals
4
proposals aerosol
4
aerosol composition
4
composition phase
4

Similar Publications

Estimating spatiotemporal maps of greenhouse gases (GHGs) is important for understanding climate change and developing mitigation strategies. However, current methods face challenges, including the coarse resolution of numerical models, and gaps in satellite data, making it essential to improve the spatiotemporal estimation of GHGs. This study aims to develop an advanced technique to produce high-fidelity (1 km) maps of CO and CH over the Arabian Peninsula, a highly vulnerable region to climate change.

View Article and Find Full Text PDF

Smallest microplastics intensify maize yield decline, soil processes and consequent global warming potential.

J Hazard Mater

December 2024

State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes.

View Article and Find Full Text PDF

Anthropogenic emissions of non-CO greenhouse gases, such as low-concentration coal mine methane (cCH < 30 vol%), have a significant impact on global warming. The main component of coal mine methane is methane (CH), which is both a greenhouse gas and a high-quality clean energy gas. To study the combustion and heat transfer reactions of low-concentration coal mine methane in a catalytic oxidation device, a numerical simulation approach was employed to establish a model of the catalytic oxidation device that includes periodic boundary conditions, methane combustion mechanisms, and turbulent-laminar flow characteristics.

View Article and Find Full Text PDF

The population has increased in recent decades, and as a result, the increase in urban wastewater has led to many environmental problems. In this study, the environmental impacts of the Southern Tehran treatment plant were assessed via life cycle assessment (LCA) (SimaPro 9.4.

View Article and Find Full Text PDF

Objective: To assess the carbon footprint, accessibility, and diagnostic performance of an expedited 'One-Stop' prostate cancer (PCa) diagnostic pathway.

Materials And Methods: A total of 1083 consecutive patients undergoing magnetic resonance imaging (MRI) followed by transrectal ultrasound fusion-guided prostate biopsy (PBx) were identified from a prospective database. The patients were divided according to the diagnostic pathway: One-Stop, with MRI and same-day PBx (3 hours apart), or Standard, with MRI followed by a second visit for PBx.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!