[Viral oncogenesis and genomic instability: the centr(osom)al connection].

Virologie (Montrouge)

Centre international de recherche en infectiologie, Équipe oncogenèse rétrovirale, Inserm U1111, Université Claude-Bernard Lyon 1, CNRS, UMR5308, École normale supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007 Lyon, France, Centre international de recherche en infectiologie, Équipe herpèsvirus oncogènes, Inserm U1111, Université Claude-Bernard Lyon 1, CNRS, UMR5308, École normale supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007 Lyon, France.

Published: October 2019

Currently, more than 10% of human cancers are associated with viral infection. Studies on oncoviruses led to the development of clinical intervention strategies and elucidated fundamental cellular events altered upon cell transformation. Cancer cells exhibit several hallmarks including genomic instability, defined as a high frequency of mutations including gain or loss of chromosomes. The centrosome is an organelle that governs mitotic chromosome segregation and that functions as a signaling platform downstream of the DNA damage response. Here, we review the current literature to highlight how oncoviruses induce genomic instability via the deregulation of the centrosome. Viral interference with the centrosome duplication cycle, leading to centrosome amplification, is illustrated, with a special emphasis on mechanisms shared by several viral families. In addition, we discuss how oncoviruses could alter the signaling functions of the centrosome, and we comment on the bibliographic gaps that could be addressed by future research.

Download full-text PDF

Source
http://dx.doi.org/10.1684/vir.2019.0792DOI Listing

Publication Analysis

Top Keywords

genomic instability
12
centrosome
5
[viral oncogenesis
4
oncogenesis genomic
4
instability centrosomal
4
centrosomal connection]
4
connection] currently
4
currently 10%
4
10% human
4
human cancers
4

Similar Publications

Identification of the clinical and genetic characteristics of gliomas with gene fusions by integrated genomic and transcriptomic analysis.

Eur J Med Res

January 2025

Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North No.1838, Guangzhou, 510515, Guangdong, People's Republic of China.

The identification of oncogenic gene fusions in diffuse gliomas may serve as potential therapeutic targets and prognostic indicators, representing a novel strategy for treating gliomas consistent with the principles of personalized medicine. This study identified detectable oncogene fusions in glioma patients through an integrated analysis of genomic and transcriptomic data, which encompassed whole exon sequencing and next-generation RNA sequencing. In addition, this study also conducted a comparison of the genetic characteristics, tumor microenvironment, mutation burden and survival between glioma patients with or without gene fusions.

View Article and Find Full Text PDF

Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.

View Article and Find Full Text PDF

Impact of cuproptosis in gliomas pathogenesis with targeting options.

Chem Biol Interact

January 2025

Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece. Electronic address:

Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions.

View Article and Find Full Text PDF

True cancer stem cells exhibit relative degrees of dormancy and genomic stability.

Neoplasia

January 2025

Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.

Background: Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.

View Article and Find Full Text PDF

Huntington's disease, one of more than 50 inherited repeat expansion disorders, is a dominantly inherited neurodegenerative disease caused by a CAG expansion in HTT. Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the disease is driven by the CAG length-dependent propensity of the repeat to further expand in the brain. Routes to slowing somatic CAG expansion, therefore, hold promise for disease-modifying therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!