A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distentangling the systems contributing to changes in learning during adolescence. | LitMetric

Distentangling the systems contributing to changes in learning during adolescence.

Dev Cogn Neurosci

Department of Psychology, University of California, Berkeley, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, United States.

Published: February 2020

Multiple neurocognitive systems contribute simultaneously to learning. For example, dopamine and basal ganglia (BG) systems are thought to support reinforcement learning (RL) by incrementally updating the value of choices, while the prefrontal cortex (PFC) contributes different computations, such as actively maintaining precise information in working memory (WM). It is commonly thought that WM and PFC show more protracted development than RL and BG systems, yet their contributions are rarely assessed in tandem. Here, we used a simple learning task to test how RL and WM contribute to changes in learning across adolescence. We tested 187 subjects ages 8 to 17 and 53 adults (25-30). Participants learned stimulus-action associations from feedback; the learning load was varied to be within or exceed WM capacity. Participants age 8-12 learned slower than participants age 13-17, and were more sensitive to load. We used computational modeling to estimate subjects' use of WM and RL processes. Surprisingly, we found more protracted changes in RL than WM during development. RL learning rate increased with age until age 18 and WM parameters showed more subtle, gender- and puberty-dependent changes early in adolescence. These results can inform education and intervention strategies based on the developmental science of learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994540PMC
http://dx.doi.org/10.1016/j.dcn.2019.100732DOI Listing

Publication Analysis

Top Keywords

learning
8
changes learning
8
learning adolescence
8
participants age
8
distentangling systems
4
systems contributing
4
changes
4
contributing changes
4
adolescence multiple
4
multiple neurocognitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!